1067 Sort with Swap(0, i) (25 分)(贪心,环)

本文探讨了一种特殊的排序问题,即如何使用仅有的Swap(0,*)操作来对{0,1,2,...,N−1}

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given any permutation of the numbers {0, 1, 2,..., N−1}, it is easy to sort them in increasing order. But what if Swap(0, *) is the ONLY operation that is allowed to use? For example, to sort {4, 0, 2, 1, 3} we may apply the swap operations in the following way:

Swap(0, 1) => {4, 1, 2, 0, 3}

Swap(0, 3) => {4, 1, 2, 3, 0}

Swap(0, 4) => {0, 1, 2, 3, 4}

Now you are asked to find the minimum number of swaps need to sort the given permutation of the first N nonnegative integers.

Input Specification:

Each input file contains one test case, which gives a positive N (≤10

5

) followed by a permutation sequence of {0, 1, ..., N−1}. All the numbers in a line are separated by a space.

Output Specification:

For each case, simply print in a line the minimum number of swaps need to sort the given permutation.

Sample Input:

10

3 5 7 2 6 4 9 0 8 1

Sample Output:

9

#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <string>
#include <cctype>
#include <string.h>
#include <cstdio>
using namespace std;
int main()
{
    int n,t,cnt=0,a[100010];
    cin>>n;
    for(int i=0;i<n;i++){
        cin>>t;
        a[t]=i;
    }
    for(int i=0;i<n;i++){
        if(a[i]!=i){
            while(a[0]!=0){
                swap(a[0],a[a[0]]);
                cnt++;
            }
            if(a[i]!=i){
                swap(a[0],a[i]);
                cnt++;
            }
        }
    }
    cout<<cnt;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小火汁猛猛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值