Given a non-empty tree with root R, and with weight W
i
assigned to each tree node T
i
. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.
Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let's consider the tree showed in the following figure: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in the figure.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 0<N≤100, the number of nodes in a tree, M (<N), the number of non-leaf nodes, and 0<S<2
30
, the given weight number. The next line contains N positive numbers where W
i
(<1000) corresponds to the tree node T
i
. Then M lines follow, each in the format:
ID K ID[1] ID[2] ... ID[K]
where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 00.
Output Specification:
For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.
Note: sequence {A
1
,A
2
,…,A
n
} is said to be greater than sequence {B
1
,B
2
,…,B
m
} if there exists 1≤k<min{n,m} such that A
i
=B
i
for i=1,…,k, and A
k+1
>B
k+1
.
Sample Input:
20 9 24
10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2
00 4 01 02 03 04
02 1 05
04 2 06 07
03 3 11 12 13
06 1 09
07 2 08 10
16 1 15
13 3 14 16 17
17 2 18 19
Sample Output:
10 5 2 7
10 4 10
10 3 3 6 2
10 3 3 6 2
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <string>
#include <cctype>
#include <string.h>
#include <cstdio>
using namespace std;
int target;
struct NODE{
int w;
vector<int> child;
};
vector<NODE> v;
vector<int> path;
void dfs(int index,int nodeNum,int sum){
if(sum>target) return;
if(sum==target){
if(v[index].child.size()!=0) return;
for(int i=0;i<nodeNum;i++)
printf("%d%c",v[path[i]].w,i!=nodeNum-1?' ':'\n');
return;
}
for(int i=0;i<v[index].child.size();i++){
int node=v[index].child[i];
path[nodeNum]=node;
dfs(node,nodeNum+1,sum+v[node].w);
}
}
bool cmp(int a,int b){
return v[a].w>v[b].w; //根据权值交换序号
}
int main(){
int n,m,node,k;
cin>>n>>m>>target;
v.resize(n);
path.resize(n);
for(int i=0;i<n;i++)
cin>>v[i].w;
for(int i=0;i<m;i++){
cin>>node>>k;
v[node].child.resize(k);
for(int j=0;j<k;j++)
cin>>v[node].child[j];
sort(v[node].child.begin(),v[node].child.end(),cmp);
}
dfs(0,1,v[0].w);
return 0;
}