A reversible prime in any number system is a prime whose "reverse" in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
Now given any two positive integers N (<10
5
) and D (1<D≤10), you are supposed to tell if N is a reversible prime with radix D.
Input Specification:
The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
Output Specification:
For each test case, print in one line Yes if N is a reversible prime with radix D, or No if not.
Sample Input:
73 10
23 2
23 10
-2
Sample Output:
Yes
Yes
No
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <cctype>
#include <string.h>
#include <cstdio>
using namespace std;
bool isprime(int num){
if(num==0||num==1) return false;
for(int i=2;i*i<=num;i++)
if(num%i==0) return false;
return true;
}
int main(){
int n,d;
while(cin>>n){
if(n<0) break;
cin>>d;
if(!isprime(n)){
cout<<"No\n";
continue;
}
int len=0,arr[100];
while(n!=0){ //转换为d进制数
arr[len++]=n%d;
n/=d;
}
for(int i=0;i<len;i++) //倒置相加转换为十进制
n=arr[i]+n*d;
if(isprime(n)) cout<<"Yes\n";
else cout<<"No\n";
}
return 0;
}