最近突然迷上了docker,所以就学习一下怎么使用docker自定义镜像。
最终制作的镜像,大家可以通过以下指令拉取:
docker pull walker519/cuda_python_tensorflow-gpu:9.0_3.5_1.12.0
镜像基于cuda9.0制作,环境包括:
absl-py (0.8.0)
astor (0.8.0)
attrs (19.1.0)
backcall (0.1.0)
bleach (3.1.0)
chardet (2.3.0)
decorator (4.4.0)
defusedxml (0.6.0)
entrypoints (0.3)
gast (0.3.2)
grpcio (1.23.0)
h5py (2.10.0)
ipykernel (5.1.2)
ipython (7.8.0)
ipython-genutils (0.2.0)
ipywidgets (7.5.1)
jedi (0.15.1)
Jinja2 (2.10.1)
jsonschema (3.0.2)
jupyter (1.0.0)
jupyter-client (5.3.3)
jupyter-console (6.0.0)
jupyter-core (4.5.0)
Keras-Applications (1.0.8)
Keras-Preprocessing (1.1.0)
Markdown (3.1.1)
MarkupSafe (1.1.1)
mistune (0.8.4)
nbconvert (5.6.0)
nbformat (4.4.0)
notebook (6.0.1)
numpy (1.16.4)
opencv-python (4.1.1.26)
pandocfilters (1.4.2)
parso (0.5.1)
pexpect (4.7.0)
pickleshare (0.7.5)
pip (8.1.1)
prometheus-client (0.7.1)
prompt-toolkit (2.0.9)
protobuf (3.9.2)
ptyprocess (0.6.0)
pycurl (7.43.0)
Pygments (2.4.2)
pygobject (3.20.0)
pyrsistent (0.15.4)
python-apt (1.1.0b1+ubuntu0.16.4.5)
python-dateutil (2.8.0)
pyzmq (18.1.0)
qtconsole (4.5.5)
requests (2.9.1)
Send2Trash (1.5.0)
setuptools (20.7.0)
six (1.10.0)
ssh-import-id (5.5)
tensorboard (1.12.2)
tensorflow-gpu (1.12.0)
termcolor (1.1.0)
terminado (0.8.2)
testpath (0.4.2)
tornado (6.0.3)
traitlets (4.3.2)
unattended-upgrades (0.1)
urllib3 (1.13.1)
wcwidth (0.1.7)
webencodings (0.5.1)
Werkzeug (0.16.0)
wheel (0.29.0)
widgetsnbextension