96. Unique Binary Search Trees

本文介绍了两种不同的方法来计算不同结构的二叉搜索树的数量:递归方法和动态规划方法。递归方法通过遍历所有可能的节点作为根节点的情况来计算数量,而动态规划方法则使用一个数组来存储子问题的解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这道题比较厉害,起初以为在95.Unique Binary Search TreesII进行计数就行,后来才发现别有洞天,很有意思。当然,解决思路也有两个。

一.递归思路。这个和95.Unique Binary Search TreesII很像,但细节很重要。

class Solution {
    
    int[] dp;
    public int numTrees(int n) {
        dp = new int[n];
        if(n==0){
            return 0;
        }
        
        return getTrees(1,n);
    }
    
    private int getTrees(int l, int r){
        
       
        if(l>r){
            return 1;
        }
        
        if(l==r){
            return 1;
        }
        if(dp[r-l]!=0){
            return dp[r-l];
        }
        
        int left_count, right_count;
        int count=0;
        for(int i=l; i<=r; i++){
            left_count = getTrees(l, i-1);
            right_count = getTrees(i+1, r);
            count+= left_count*right_count;
        }
        dp[r-l] = count;
        return count;
    }
}

二.动态规划。

直接贴solution

public class Solution {
  public int numTrees(int n) {
    int[] G = new int[n + 1];
    G[0] = 1;
    G[1] = 1;

    for (int i = 2; i <= n; ++i) {
      for (int j = 1; j <= i; ++j) {
        G[i] += G[j - 1] * G[i - j];
      }
    }
    return G[n];
  }
}

### 如何使用二叉搜索树(BST)实现 A+B 操作 在 C 编程语言中,可以通过构建两个二叉搜索树(BST),分别表示集合 A 和 B 的元素,然后通过遍历其中一个 BST 并将其节点插入到另一个 BST 中来完成 A+B 操作。以下是详细的实现方法: #### 数据结构定义 首先需要定义一个简单的二叉搜索树节点的数据结构。 ```c typedef struct TreeNode { int value; struct TreeNode* left; struct TreeNode* right; } TreeNode; ``` #### 插入函数 为了向 BST 添加新元素,可以编写如下 `insert` 函数。 ```c TreeNode* createNode(int value) { TreeNode* newNode = (TreeNode*)malloc(sizeof(TreeNode)); newNode->value = value; newNode->left = NULL; newNode->right = NULL; return newNode; } void insert(TreeNode** root, int value) { if (*root == NULL) { *root = createNode(value); } else { if (value < (*root)->value) { insert(&((*root)->left), value); // Insert into the left subtree. } else if (value > (*root)->value) { insert(&((*root)->right), value); // Insert into the right subtree. } // If value == (*root)->value, do nothing since duplicates are not allowed in a set. } } ``` #### 合并操作 要执行 A+B 操作,即合并两棵 BST,可以从一棵树中提取所有元素并将它们逐个插入另一棵树中。 ```c // In-order traversal to extract elements from one tree and add them to another. void mergeTrees(TreeNode* sourceRoot, TreeNode** targetRoot) { if (sourceRoot != NULL) { mergeTrees(sourceRoot->left, targetRoot); // Traverse left subtree first. insert(targetRoot, sourceRoot->value); // Add current node's value to target tree. mergeTrees(sourceRoot->right, targetRoot); // Then traverse right subtree. } } ``` #### 主程序逻辑 假设我们已经初始化了两棵 BST 表示集合 A 和 B,则可以通过调用上述函数完成 A+B 操作。 ```c int main() { TreeNode* treeA = NULL; TreeNode* treeB = NULL; // Example: Adding values to Tree A. int arrayA[] = {5, 3, 7, 2, 4}; for (size_t i = 0; i < sizeof(arrayA)/sizeof(arrayA[0]); ++i) { insert(&treeA, arrayA[i]); } // Example: Adding values to Tree B. int arrayB[] = {6, 8, 1}; for (size_t i = 0; i < sizeof(arrayB)/sizeof(arrayB[0]); ++i) { insert(&treeB, arrayB[i]); } // Perform A + B by merging all nodes of treeB into treeA. mergeTrees(treeB, &treeA); // Now treeA contains all unique elements from both sets. return 0; } ``` 此代码片段展示了如何利用二叉搜索树的性质高效地进行集合并集运算[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值