1154 Vertex Coloring (25 分)

本文探讨了图论中的k-着色问题,即如何使用最多k种颜色为图的顶点上色,使得任意两个相邻顶点颜色不同。通过输入图的顶点数、边数以及具体的边连接信息,结合一组给定的颜色方案,算法判断这些方案是否构成有效的k-着色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

proper vertex coloring is a labeling of the graph's vertices with colors such that no two vertices sharing the same edge have the same color. A coloring using at most k colors is called a (proper) k-coloring.

Now you are supposed to tell if a given coloring is a proper k-coloring.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers N and M (both no more than 10​4​​), being the total numbers of vertices and edges, respectively. Then M lines follow, each describes an edge by giving the indices (from 0 to N−1) of the two ends of the edge.

After the graph, a positive integer K (≤ 100) is given, which is the number of colorings you are supposed to check. Then K lines follow, each contains N colors which are represented by non-negative integers in the range of int. The i-th color is the color of the i-th vertex.

Output Specification:

For each coloring, print in a line k-coloring if it is a proper k-coloring for some positive k, or No if not.

Sample Input:

10 11
8 7
6 8
4 5
8 4
8 1
1 2
1 4
9 8
9 1
1 0
2 4
4
0 1 0 1 4 1 0 1 3 0
0 1 0 1 4 1 0 1 0 0
8 1 0 1 4 1 0 5 3 0
1 2 3 4 5 6 7 8 8 9

Sample Output:

4-coloring
No
6-coloring
No

#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<vector>
#include<string>
#include<algorithm>
#include<set>
#include<queue>
using namespace std;
int n, m, k;
int main() {
	cin >> n >> m;
	vector<vector<int>> gra(n);
	for (int i = 0; i < m; i++) {
		int t1, t2;
		cin >> t1 >> t2;
		gra[t1].push_back(t2);
		gra[t2].push_back(t1);
	}
	cin >> k;
	set<int> st;
	for (int i = 0; i < k; i++) {
		bool visited[10010] = { 0 };
		st.clear();
		vector<int> color(n);
		for (int j = 0; j < n; j++) {
			scanf("%d", &color[j]);
			st.insert(color[j]);
		}
		queue<int> qu;
		for (int j = 0; j < n; j++) {
			if (gra[j].size() != 0) {
				visited[j] = 1;
				qu.push(j);
				break;
			}
		}
		bool fg = 0;
		while (!qu.empty()) {
			int tmp = qu.front();
			qu.pop();
			for (int j = 0; j < gra[tmp].size(); j++) {
				if (color[tmp] != color[gra[tmp][j]]) {
					if (visited[gra[tmp][j]] == 0) {
						qu.push(gra[tmp][j]);
						visited[gra[tmp][j]] = 1;
					}
				}
				else {
					fg = 1;
					while (!qu.empty()) qu.pop();
					printf("No\n");
					break;
				}
			}
		}
		if (fg == 0) printf("%d-coloring\n", (int)st.size());
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值