A proper vertex coloring is a labeling of the graph's vertices with colors such that no two vertices sharing the same edge have the same color. A coloring using at most k colors is called a (proper) k-coloring.
Now you are supposed to tell if a given coloring is a proper k-coloring.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers N and M (both no more than 104), being the total numbers of vertices and edges, respectively. Then M lines follow, each describes an edge by giving the indices (from 0 to N−1) of the two ends of the edge.
After the graph, a positive integer K (≤ 100) is given, which is the number of colorings you are supposed to check. Then K lines follow, each contains N colors which are represented by non-negative integers in the range of int. The i-th color is the color of the i-th vertex.
Output Specification:
For each coloring, print in a line k-coloring
if it is a proper k
-coloring for some positive k
, or No
if not.
Sample Input:
10 11
8 7
6 8
4 5
8 4
8 1
1 2
1 4
9 8
9 1
1 0
2 4
4
0 1 0 1 4 1 0 1 3 0
0 1 0 1 4 1 0 1 0 0
8 1 0 1 4 1 0 5 3 0
1 2 3 4 5 6 7 8 8 9
Sample Output:
4-coloring
No
6-coloring
No
#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<vector>
#include<string>
#include<algorithm>
#include<set>
#include<queue>
using namespace std;
int n, m, k;
int main() {
cin >> n >> m;
vector<vector<int>> gra(n);
for (int i = 0; i < m; i++) {
int t1, t2;
cin >> t1 >> t2;
gra[t1].push_back(t2);
gra[t2].push_back(t1);
}
cin >> k;
set<int> st;
for (int i = 0; i < k; i++) {
bool visited[10010] = { 0 };
st.clear();
vector<int> color(n);
for (int j = 0; j < n; j++) {
scanf("%d", &color[j]);
st.insert(color[j]);
}
queue<int> qu;
for (int j = 0; j < n; j++) {
if (gra[j].size() != 0) {
visited[j] = 1;
qu.push(j);
break;
}
}
bool fg = 0;
while (!qu.empty()) {
int tmp = qu.front();
qu.pop();
for (int j = 0; j < gra[tmp].size(); j++) {
if (color[tmp] != color[gra[tmp][j]]) {
if (visited[gra[tmp][j]] == 0) {
qu.push(gra[tmp][j]);
visited[gra[tmp][j]] = 1;
}
}
else {
fg = 1;
while (!qu.empty()) qu.pop();
printf("No\n");
break;
}
}
}
if (fg == 0) printf("%d-coloring\n", (int)st.size());
}
return 0;
}