A proper vertex coloring is a labeling of the graph's vertices with colors such that no two vertices sharing the same edge have the same color. A coloring using at most k colors is called a (proper) k-coloring.
Now you are supposed to tell if a given coloring is a proper k-coloring.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers N and M (both no more than 104), being the total numbers of vertices and edges, respectively. Then M lines follow, each describes an edge by giving the indices (from 0 to N−1) of the two ends of the edge.
After the graph, a positive integer K (≤ 100) is given, which is the number of colorings you are supposed to check. Then K lines follow, each contains N colors which are represented by non-negative integers in the range of int. The i-th color is the color of the i-th vertex.
Output Specification:
For each coloring, print in a line k-coloring
if it is a proper k
-coloring for some positive k
, or No
if not.
Sample Input:
10 11
8 7
6 8
4 5
8 4
8 1
1 2
1 4
9 8
9 1
1 0
2 4
4
0 1 0 1 4 1 0 1 3 0
0 1 0 1 4 1 0 1 0 0
8 1 0 1 4 1 0 5 3 0
1 2 3 4 5 6 7 8 8 9
Sample Output:
4-coloring
No
6-coloring
No
思路:这道题也不难,一开始用矩阵存边,只得到15分...后来就干脆采用pair存储一条边,这样也方便后面的判断,减少了复杂度。
程序:
#include <cstdio>
#include <vector>
#include <set>
#include <algorithm>
#include <utility>
using namespace std;
int a[10001];
int main()
{
int n,m;
scanf("%d %d",&n,&m);
fill(a,a+n,-1);
vector<pair<int,int> > v;
for(int i = 0; i < m; i++)
{
int a,b;
scanf("%d %d",&a,&b);
v.push_back(make_pair(a,b));
}
int k;
scanf("%d",&k);
for(int i = 0; i < k; i++)
{
set<int> st;
for(int j = 0; j < n; j++)
{
int color;
scanf("%d",&color);
st.insert(color);
a[j] = color;
}
bool flag = true;
for(int j = 0; j < m; j++)
{
if(a[v[j].first] == a[v[j].second])
{
flag = false;
printf("No\n");
break;
}
}
if(flag)
printf("%d-coloring\n",st.size());
}
return 0;
}