2021-07-06文献阅读

1 A multi-source dense adaptation adversarial network for fault diagnosis of machinery

在这里插入图片描述
创新点:
(1) 多源域域适应
(2) the dense convolution and fusion convolution blocks are used for deep feature extraction and fusion
(3) a joint loss function is reconstructed under the framework of unsupervised learning, which considers the distribution differences of the features and the label information simultaneously.

Multi-source Unsupervised Domain Adaptation for Machinery Fault Diagnosis under Different Working Conditions

在这里插入图片描述
创新点:
(1) in the first stage, multiple specific feature spaces are obtained, then the distributions of each pair of source and target domain are aligned since it is difficult to extract the common domain-invariant features for all domains
(2) in the second stage, by considering the domain specific decision boundaries, the probabilistic outputs of classifiers are also aligned

3 Multi-source transfer learning network to complement knowledge for intelligent diagnosis of machines with unseen faults

在这里插入图片描述

4 A Domain Adaptation with Semantic Clustering (DASC) method for fault diagnosis of rotating machinery

在这里插入图片描述
创新点: semantic clustering可以参考,考虑代码实现

5 Weighted domain adaptation networks for machinery fault diagnosis

在这里插入图片描述
创新点:多源域考虑加权

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值