【陈工笔记-Transformer】GAMLP图注意力多层感知器中注意力机制的理解

基本信息

标题:图注意力多层感知器
链接: Graph Attention Multi-Layer Perceptron | Papers With Code
作者:Wentao Zhang,Ziqi Yin,Zeang Sheng,Yang Li,Wen Ouyang,Xiaosen Li,Yangyu Tao,Zhi Yang,Bin Cui

要点记录
问题:

图神经网络GNN在许多基于图的应用中取得了巨大成功。然而,大规模图的高稀疏性阻碍了它们在工业场景中的应用。虽然针对大规模图提出了一些可扩展的GNN,但它们对每个节点采用固定的邻域,导致GNN模型在训练过程中对实际感知域不敏感。因此在稀疏区域内对节点采用大传播深度时,会面临过平滑问题。具体而言,现有的基于GNN的改进算法,存在特征传播方式缺乏灵活性的问题,无法对不同感受野(RF) 下的关联节点进行建模,会产生两种可能的结果:(1)长距离的依赖性由于 RF 过小而不能被充分利用;(2)由于RF过大而引入过平滑的噪声而失去了局部信息。

与先前的基于GNN的方法SIGN相比,SIGN解决了不同跳的信息没有充分利用的问题,它将不同跳的特征做了拼接操作,并将其输入至一个简单的MLP。但是,SIGN的缺点在于它并没有注意到不同节点所需要的传播深度不同的问题。如果跳数K取得非常大,那么后续拼接的特征都是过平

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值