对于动态规划问题,我将拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!
- 确定dp数组(dp table)以及下标的含义
- 确定递推公式
- dp数组如何初始化
- 确定遍历顺序
- 举例推导dp数组
class Solution {
public int fib(int n) {
if (n <= 1) {
return n;
}
int[] dp = new int[n + 1];
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
}
class Solution {
public int climbStairs(int n) {
int[] dp = new int[n+1];
dp[0] = 1;
dp[1] = 1;
for(int i = 2;i <= n; i++){
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
}
}
class Solution {
public int minCostClimbingStairs(int[] cost) {
int len = cost.length;
int[] dp = new int[len + 1];
dp[0] = 0;
dp[1] = 0;
for (int i = 2; i <= len; i++) {
dp[i] = Math.min((dp[i - 1] + cost[i - 1]), (dp[i - 2] + cost[i - 2]));
}
return dp[len];
}
}
class Solution {
public int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
for (int i = 0; i < m; i++) {
dp[i][0] = 1;
}
for (int i = 0; i < n; i++) {
dp[0][i] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
}
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] dp = new int[m][n];
if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) {
return 0;
}
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
dp[i][0] = 1;
}
for (int i = 0; i < n && obstacleGrid[0][i] == 0; i++) {
dp[0][i] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = (obstacleGrid[i][j] == 0) ? dp[i - 1][j] + dp[i][j - 1] : 0;
}
}
return dp[m - 1][n - 1];
}
}
class Solution {
public int integerBreak(int n) {
int[] dp = new int[n + 1];
for (int i = 2; i <= n; i++) {
int curMax = 0;
for (int j = 1; j < i; j++) {
curMax = Math.max(curMax, Math.max(j * (i - j), j * dp[i - j]));
}
dp[i] = curMax;
}
return dp[n];
}
}
class Solution {
public int numTrees(int n) {
int[] dp = new int[n + 1];
dp[0] = 1;
dp[1] = 1;
for (int i = 2; i <= n; i++) {
for (int j = 1; j <= i; j++) {
dp[i] += dp[j - 1] * dp[i - j];
}
}
return dp[n];
}
}
01背包和完全背包就够用了。
而完全背包又是也是01背包稍作变化而来,即:完全背包的物品数量是无限的。
01背包
01背包
// weight数组的大小 就是物品个数
for(int i = 1; i < weight.size(); i++) {
// 遍历物品
for(int j = 0; j <= bagweight; j++) {
// 遍历背包容量
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
public class BagProblem {
public static void main(String[] args) {
int[] weight = {
1,3,4};
int[] value = {
15,20,30};
int bagSize = 4;
testWeightBagProblem(weight,value,bagSize);
}
/**
* 动态规划获得结果
* @param weight 物品的重量
* @param value 物品的价值
* @param bagSize 背包的容量
*/
public static void testWeightBagProblem(int[] weight, int[] value, int bagSize){
// 创建dp数组
int goods = weight.length; // 获取物品的数量
int[][] dp = new int[goods][bagSize + 1];
// 初始化dp数组
// 创建数组后,其中默认的值就是0