YOLOv5 Focus C3 各模块详解及代码实现

本文详细解析了YOLOv5的配置文件yolov5s.yaml,包括Focus、C3、SPP等核心模块的功能及实现原理,并对比了YOLOv5与YOLOv3的改进。
该文章已生成可运行项目,


主要从yolov5s.yaml 的配置文件来逐一解析其中的模块:Focus、C3、SPP、Conv、Bottleneck模块。
这个是针对最早的v5版本进行讲解,现在2022最新版本是V6.2。有一些细节的差别比如Backbone部分Focus倍替换成6*6的Conv,Neck部分SPP被替换成SPPF等,想要深入学习建议去github学习源码。

yolov5s.yaml

# Parameters
nc: 5  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple

anchors:
  - [24,24,29,84,59,42]  # P3/8
  - [45,146,75,87,157,49]  # P4/16
  - [310,167,139,341,127,151]  # P5/32

# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 9, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 3, C3, [1024, False]],  # 9
  ]

# YOLOv5 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

yolov5s.yaml基本参数含义

yolov5的各个版本参数的含义是一样的,不同的地方在于网络通道数和模块重复数量,所以只要理解了这个配置文件其他的版本都是差不多意思。

一些基本参数:

nc :数据集中物体的类别数
depth_multiple: 控制网络深度的系数
width_multiple: 控制网络宽度的系数
anchors :给不同尺度特征图分配的anchors,可以看到包含三个列表,表示给三个尺度分配,这三个尺度在**[[17, 20, 23], 1, Detect, [nc, anchors]] 指明**,分别是网络的第17、20和23层。注释P3/8是指输入下采样了23 = 8倍,我们也可以发现网络的第17层特征图为输入的1/8。 根据不同的数据集可

本文章已经生成可运行项目
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值