0 引言
本博客基于tensorflow2.keras,搭建一个简单的BP网络,用于简单的数据分类任务,并采用粒子群算法实现**网络初始权重**的优化选择,
目前网上大部分资料都是基于MATLAB的,所以我想写个tensorflow2.x环境下的使用方法。
1.网络搭建
构建一个两个隐含层的BP网络,各层数量是42→256→128→10,其中42是输入数据的维度,10是分类的类别数,程序如下,优化器采用Adam,学习率0.01,损失为交叉熵损失函数。
from tensorflow.keras import Sequential, layers
import tensorflow as tf
def model():
tf.random.set_seed(0)
network = Sequential([layers.Dense(256, activation='relu'),
layers.Dense(128, activation='relu'),
layers.Dense(10, activation='softmax')])
network.build(input_shape=(None,42))
network.compile(optimizer=tf.keras.optimizers.Adam(lr=0.01),
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=['accuracy'])
return network
2.需要优化的参数
正式优化前需要知道要优化的网络权重参数的具体数量是多少,也就是我们粒子群的维度,分析可知,该网络的权重参数主要就是
① 输入层到隐含层1的权值:42*256
② 隐含层1的偏置:256
③ 隐含层1到隐含层2的权值:256*128
④ 隐含层2的偏置:128
⑤ 隐含层2到输出层的权值:128*10
⑥ 输出层的偏置:10
总计为:45194
3.粒子群优化
最主要的函数就是tensorflow.keras中的model.set_weights(**PSO寻优得到的权重**),利用这个函数,我们建立好网络之后,只需要将粒子群的优化得到的位置,转换为所需要的权值与偏置的列表,然后set给网络即可,具体如下:
def fitness(init_weights):#init_weights为pso优化得到的值
network=model()#新建网络
weights = network.get_weights()#获取网络的权重
#将pso传进来的值转换为所需要的权重,就是对应weights中的每个numpy矩阵(这是个列表)
convert_weights=[]
init = 0
for w in weights:
shape= w.flatten().shape[0]
weight_next = init_weights[init:shape+init]
init += shape
convert_weights.append(weight_next.reshape(w.shape))
network.set_weights(convert_weights)
history = network.fit(x_train,y_train, epochs=5,batch_size=256,
validation_data=(x_test,y_test),
validation_freq=1, verbose=0)
return history.history['val_accuracy'][-1]#以最大化验证集的分类准确率作为PSO的适应度函数
#目的就是利用PSO找到一组最优初始权重,用这组初始权重训练的网络,能够使得验证集正确率最高
4.全部代码
# -*- coding: utf-8 -*-
from sklearn.preprocessing import MinMaxScaler,StandardScaler
import numpy as np
#%% 加载数据
data=np.load('data.npz')
x_train=data['x_train']#1000*42
y_train=data['y_train']#1000*1
x_test=data['x_test']#300*42
y_test=data['y_test']#300*1 标签是0-9,共10类
ss_X=MinMaxScaler(feature_range=(0,1)).fit(x_train)
x_train = ss_X.transform(x_train)
x_test = ss_X.transform(x_test)
#%%
from tensorflow.keras import Sequential, layers
import tensorflow as tf
def model():
tf.random.set_seed(0)
network = Sequential([layers.Dense(256, activation='relu'),
layers.Dense(128, activation='relu'),
layers.Dense(10, activation='softmax')])
network.build(input_shape=(None,42))
network.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.01),
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=['accuracy'])
return network
network=model()
#统计需要优化的权重数数量,也是粒子群的优化维度
weights = network.get_weights()
n_dim=0
for w in weights:
shape= w.flatten().shape[0]
n_dim += shape
#%%
def fitness(init_weights):#以最大化验证集的分类正确率为适应度函数
network=model()
weights = network.get_weights()
convert_weights=[]
init = 0
for w in weights:
shape= w.flatten().shape[0]
weight_next = init_weights[init:shape+init]
init += shape
convert_weights.append(weight_next.reshape(w.shape))
network.set_weights(convert_weights)
history = network.fit(x_train,y_train, epochs=5,batch_size=256,
validation_data=(x_test,y_test),
validation_freq=1, verbose=0)
return history.history['val_accuracy'][-1]
class PSO():
def __init__(self):
#PSO参数设置
self.BOUNDS_LOW = -1*np.ones(n_dim)
self.BOUNDS_HIGH = 1*np.ones(n_dim)
self.NUM_OF_PARAMS = n_dim
self.pN=5#粒子数
self.max_iter=10#最大寻优次数
self.wmax = 0.8;#权重最大值
self.wmin = 0.2;#权重最小值
self.c1 = 1.5;#学习因子最大值
self.c2 = 1.5;#学习因子最小值
def Initializaiton(self):
#初始化
self.X = np.zeros((self.pN,self.NUM_OF_PARAMS))
self.V = np.zeros((self.pN,self.NUM_OF_PARAMS))
self.pbest = np.zeros((self.pN,self.NUM_OF_PARAMS))
self.gbest = np.zeros((1,self.NUM_OF_PARAMS))
self.p_fit = np.zeros(self.pN)
self.fit = 0
for i in range(self.pN):
for j in range(self.NUM_OF_PARAMS):
self.X[i][j] = \
np.random.rand()*(self.BOUNDS_HIGH[j]-self.BOUNDS_LOW[j])+self.BOUNDS_LOW[j]
self.V[i][j] = np.random.rand()
self.pbest[i] = self.X[i].copy()
tmp = fitness( self.X[i,:] )
self.p_fit[i] = tmp
if(tmp > self.fit):
self.fit = tmp
self.gbest = self.X[i].copy()
def Bounds(self,pop):
for i in range(self.NUM_OF_PARAMS):
if pop[i]>self.BOUNDS_HIGH[i] or pop[i]<self.BOUNDS_LOW[i] :
pop[i]=np.random.rand()*(self.BOUNDS_HIGH[i]-self.BOUNDS_LOW[i])+self.BOUNDS_LOW[i]
return pop
def loop(self):
self.Initializaiton()
# 开始优化
trace=[]
for t in range(self.max_iter):
w=self.wmax-(self.wmax-self.wmin)*np.tan(np.pi/4*t/self.max_iter)
for i in range(self.pN):
self.V[i,:] = w*self.V[i,:] + self.c1*np.random.rand()*(self.pbest[i] - self.X[i,:])+self.c2*np.random.rand()*(self.gbest - self.X[i,:])
self.X[i,:] = self.X[i,:] + self.V[i,:]
# 加入自适应变异操作,避免陷入局部最优
prob=0.5*t/self.max_iter +0.5#自适应变异,随着进化代数的增加,变异几率越小
if np.random.rand()>prob:
for j in range(self.NUM_OF_PARAMS):
self.X[i][j] =\
np.random.rand()*(self.BOUNDS_HIGH[j]-self.BOUNDS_LOW[j])+self.BOUNDS_LOW[j]
for i in range(self.pN): #更新gbest\pbest
self.X[i,:]=self.Bounds(self.X[i,:])
temp = fitness( self.X[i,:])
if(temp > self.p_fit[i]): #更新个体最优
self.p_fit[i] = temp
self.pbest[i,:] = self.X[i,:].copy()
if(self.p_fit[i] > self.fit): #更新全局最优
self.gbest = self.X[i,:].copy()
self.fit = self.p_fit[i].copy()
trace.append( self.fit)
print(self.fit)
return trace , self.gbest
pso=PSO()
trace ,gbest=pso.loop()
print(fitness(gbest))