本博客来源于优快云机器鱼,未同意任何人转载。
更多内容,欢迎点击本专栏,查看更多内容。
目录
0 引言
这个博客的目的不是为了验证模型的优越性,而是为了灌水。如果非要给个理由,可以假把意思说我们将1*1024的时域振动信号reshape成32*32的数据矩阵,再采用两个CNN分支分别提取特征并进行特征融合,模型不仅能学习到时间上,还能学习到空间上的特征。
实际上是受多模态与双流CNN的启发,利用不同分支输入表征同一事物的不同数据源,可以更好的提高精度。但我这轴承数据也没有其他数据源,所以简单粗暴的将1*1024的reshape成32*32输入2DCNN分支,1*1024输入1DCNN分支。
1 模型结构
本博客将2D-CNN与1D-CNN融合,同时对轴承数据集进行特征提取,然后在汇聚层将两者池化层的输出concat连接成一个向量,送进全连接层。模型训练结束之后,取FC层的输出作为提取到的故障特征信号。为什么不直接采用最终的分类层做十分类,主要是我以前做过测试,针对样本比较少的情况下,采用CNN的倒数第某个全连接层的输出来做SVM分类建模,比直接CNN分类层的分类效果好,如果样本多就直接用CNN的分类层做分类效果更好。
融合CNN的结构图如图所示:
2 数据准备
采用凯斯西储轴承数据集,OHP下48k采样频率驱动端的数据,我用的数据集可以在【博客】里找到,对于10类故障(1正常,9故障),分别采集200组样本,共2000组,采样点为1024。然后按7:2:1划分训练集、验证集与测试集。
#coding:utf-8
from scipy.io import loadmat,savemat
import numpy as np
import os
from sklearn import preprocessing # 0-1编码
def capture(original_path):
"""读取mat文件,返回字典
:param original_path: 读取路径
:return: 数据字典
"""
# 获得该文件夹下所有.mat文件名
filenames = os.listdir(d_path)
files = {}
n=0
for i in filenames:
# 文件路径
file_path = os.path.join(d_path, i)
print(file_path,'为第',n,'类')
n += 1
file = loadmat(file_path)
file_keys = file.keys()
for key in file_keys:
if 'DE' in key:
files[i] = file[key].ravel()
return files
def slice_enc(data,number=200,length=1024):
"""
每个样本的长度为length 每类各number个样本
"""
keys = data.keys()
labels,samples=[],[]
n=0
for i in keys:
slice_data = data[i]
for j in range(number):
random_start = np.random.randint(low=0, high=(len(slice_data) - length))
sample = slice_data[random_start:random_start + length]
labels.append(n)
samples.append(sample)
n += 1
samples,lables=np.array(samples),np.array(labels)
return samples,lables
# 按rate中的比例划分训练集 验证集与测试集,比例相加为1
def train_valid_test_slice(data, labels,rate):
nsamples=data.shape[0]
index=np.arange(nsamples)
np.random.shuffle(index)
m1=int(nsamples*rate[0])
m2=int(nsamples*(rate[0]+rate[1]))
train_X=data[index[:m1],:]
train_Y=labels[index[:m1],]
valid_X=data[index[m1:m2],:]
valid_Y=labels[index[m1:m2],]
test_X=data[index[m2:],:]
test_Y=labels[index[m2:],]
return train_X,train_Y,valid_X, valid_Y, test_X, test_Y
if __name__ == "__main__":
d_path='0HP/'
# 从所有.mat文件中读取出数据的字典
data = capture(original_path=d_path)
# 将数据切分为需要的样本
data, labels = slice_enc(data,number=500,length=1024)
# 将数据划分训练,验证集,测试集
train_X,train_Y,valid_X, valid_Y, test_X, test_Y =\
train_valid_test_slice(data, labels,rate=[0.7, 0.2, 0.1])
savemat("result/data_process.mat", {'train_X': train_X,'train_Y': train_Y,
'valid_X': valid_X,'valid_Y': valid_Y,
'test_X': test_X,'test_Y': test_Y})
2 融合模型训练
基于tensorflow2.6.1深度学习框架搭建上图所示模型,模型参数有点出入,不想改visio的图,将就着看吧,代码如下:
# 融合CNN的tensorflow2实现
# coding: utf-8
# In[1]: 导入必要的库函数
import numpy as np
from scipy.io import loadmat,savemat
from sklearn.preprocessing import MinMaxScaler,StandardScaler
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import seaborn as sns
from model import CNN_1D ,CNN_2D, CNN_fusion
from tensorflow.keras import Model
import tensorflow as tf
from tensorflow.keras.losses import SparseCategoricalCrossentropy
from tensorflow.keras.optimizers import Adam,SGD
tf.random.set_seed(0)
# In[] 加载数据
data=loadmat('result/data_process.mat')#这个是保存下来的原始数据
train_X=data['train_X']
train_Y=data['train_Y'].reshape(-1,)
valid_X=data['valid_X']
valid_Y=data['valid_Y'].reshape(-1,)
test_X=data['test_X']
test_Y=data['test_Y'].reshape(-1,)
ss=StandardScaler().fit(train_X)
train_X=ss.transform(train_X)
valid_X=ss.transform(valid_X)
test_X=ss.transform(test_X)
# In[] 搭建模型
mode='2d' # 选择 1d 2d 还是 fusion 对应1dcnn 2dcnn 与融合cnn
if mode=='1d':
model= CNN_1D()
elif mode=='2d':
model= CNN_2D()
elif mode=='fusion':
model= CNN_fusion()
model.compile(optimizer=Adam(learning_rate=0.001),
loss=SparseCategoricalCrossentropy(),
metrics=['accuracy'])
# In[] 训练
train_again = True # 为 False 的时候就直接加载训练好的模型进行测试
# 训练模型
if train_again:
history = model.fit(train_X, train_Y, epochs=100,
validation_data=(valid_X, valid_Y),
batch_size=64, verbose=1)
model.save('model/'+mode+'_model.h5')
# 画loss曲线
plt.figure()
plt.ylabel('MSE')
plt.xlabel('Epoch')
plt.plot(history.history['loss'], label='training')
plt.plot(history.history['val_loss'], label='validation')
plt.title('loss curve')
plt.legend()
plt.savefig('result/'+mode+'_loss_curve.jpg')
else: # 加载模型
model = tf.keras.models.load_model('model/'+mode+'_model.h5')
test_pred = model.predict(test_X)
pred_labels = np.argmax(test_pred,1)
acc=np.sum(pred_labels==test_Y)/len(test_Y)
print('分类精度为:%f '%(acc*100),'%')
C1= confusion_matrix(test_Y, pred_labels)
print('混淆矩阵:')
print(C1)
xtick=[str(i) for i in range(10)]
ytick=[str(i) for i in range(10)]
plt.figure()
C2=C1/C1.sum(axis=1)
sns.heatmap(C2,fmt='g', cmap='Blues',annot=True,cbar=False,xticklabels=xtick, yticklabels=ytick)
plt.xlabel('Predict label')
plt.ylabel('True label')
plt.title('Confusion_matrix')
plt.savefig('result/'+mode+'_cm.jpg')
# In[] 特征提取
feature_model = Model(inputs=model.input,outputs=model.get_layer('feature').output)
train_feature = feature_model.predict(train_X)
valid_feature = feature_model.predict(valid_X)
test_feature = feature_model.predict(test_X)
savemat('result/'+mode+'data_feature.mat', {'train_X': train_feature,'train_Y': train_Y,
'valid_X': valid_feature,'valid_Y': valid_Y,
'test_X': test_feature,'test_Y': test_Y})
plt.show()
其中model.py定义了网络结构,代码如下
# -*- coding: utf-8 -*-
from tensorflow.keras.layers import Conv1D,Conv2D, Dense, \
MaxPool1D,MaxPool2D, concatenate, Flatten,Reshape
from tensorflow.keras import Input, Model
def CNN_fusion():
inp= Input(shape=(1024), name='input1')
input1_=Reshape((32, 32,1))(inp)
input2_=Reshape((1024,1))(inp)
# 2DCNN
x1 = Conv2D(4, kernel_size=3, strides=1, activation='relu', padding='same')(input1_)
x1 = MaxPool2D(pool_size=2, strides=2)(x1)
x1 = Conv2D(8, kernel_size=3, strides=1, activation='relu', padding='same')(x1)
x1 = MaxPool2D(pool_size=2, strides=2)(x1)
x1 = Flatten()(x1)
# 1DCNN
x2 = Conv1D(4, kernel_size=16, strides=1, activation='relu', padding='same')(input2_)
x2 = MaxPool1D(pool_size=2, strides=2)(x2)
x2 = Conv1D(8, kernel_size=3, strides=1, activation='relu', padding='same')(x2)
x2 = MaxPool1D(pool_size=2, strides=2)(x2)
x2 = Flatten()(x2)
# 合并两个通道的CNN结果
x = concatenate([x1, x2])
x = Dense(128, activation='sigmoid', name='feature')(x)
output_ = Dense(10, activation='softmax', name='output')(x)
model = Model(inputs=inp, outputs=output_)
model.summary()
return model
def CNN_1D():
inp = Input(shape=(1024), name='input2')
x=Reshape((1024,1))(inp)
x = Conv1D(4, kernel_size=16, strides=1, activation='relu', padding='same')(x)
x = MaxPool1D(pool_size=2, strides=2)(x)
x = Conv1D(8, kernel_size=3, strides=1, activation='relu', padding='same')(x)
x = MaxPool1D(pool_size=2, strides=2)(x)
x = Flatten()(x)
x = Dense(128,activation='sigmoid', name='feature')(x)
output_ = Dense(10, activation='softmax', name='output')(x)
model = Model(inputs=inp, outputs=output_)
model.summary()
return model
def CNN_2D():
inp = Input(shape=(1024), name='input3')
x=Reshape((32,32,1))(inp)
x = Conv2D(4, kernel_size=3, strides=1, activation='relu', padding='same')(x)
x = MaxPool2D(pool_size=2, strides=2)(x)
x = Conv2D(8, kernel_size=3, strides=1, activation='relu', padding='same')(x)
x = MaxPool2D(pool_size=2, strides=2)(x)
x = Flatten()(x)
x = Dense(128, activation='sigmoid',name='feature')(x)
output_ = Dense(10, activation='softmax', name='output')(x)
model = Model(inputs=inp, outputs=output_)
model.summary()
return model
训练结束之后,分别输入训练集、验证集、与测试集。采集FC层的输出作为最终的提取到的特征保存到mat文件中。
3 特征可视化
将提取的特征进行二维可视化,从图像上可以看出,经CNN学习之后,不同类数据的类间区分度明显增加
# -*- coding: utf-8 -*-
from scipy.io import loadmat
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler,MinMaxScaler
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
from mpl_toolkits.mplot3d import Axes3D
# In[] 加载数据
data=loadmat('result/data_process.mat')#这个是保存下来的原始数据
input_data=data['test_X']
label=data['test_Y'].reshape(-1,)
# In[] #原始数据可视化
#method=TSNE(n_components=3)
method=PCA(n_components=3)
feature0=method.fit_transform(input_data)
colors = ['black', 'blue', 'purple', 'yellow', 'cadetblue', 'red', 'lime', 'cyan', 'orange', 'gray']
plt.figure()
ax = plt.axes(projection='3d') # 设置三维轴
for i in range(len(colors)):
ax.scatter3D(feature0[:, 0][label==i], feature0[:, 1][label==i],feature0[:, 2][label==i], c=colors[i],label=str(i))
# ax.text(np.mean(feature0[:, 0][label==i]), np.mean(feature0[:, 1][label==i]),np.mean(feature0[:, 2][label==i]), str(i))
plt.legend()
plt.title('original data')
plt.savefig('result/original data可视化.jpg')
# In[] 特征数据可视化
mode='fusion' # 选择 1d 2d 还是 fusion 对应尽1dcnn 2dcnn 与融合cnn
data=loadmat('result/'+mode+'data_feature.mat')#这个是保存下来的原始数据
input_data=data['test_X']
label=data['test_Y'].reshape(-1,)
feature1=method.fit_transform(input_data)
plt.figure()
ax = plt.axes(projection='3d') # 设置三维轴
for i in range(len(colors)):
ax.scatter3D(feature1[:, 0][label==i], feature1[:, 1][label==i],feature1[:, 2][label==i], c=colors[i],label=str(i))
plt.legend()
plt.title('feature data')
plt.savefig('result/'+mode+'可视化.jpg')
plt.show()
4 SVM故障诊断
将3提取的特征采用SVM进行分类,本文采用SVM对2中采集到的特征进行最后的分类,核函数RBF,惩罚参数1,核参数0.01。
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from scipy.io import loadmat
from sklearn.metrics import confusion_matrix
from sklearn.preprocessing import StandardScaler,MinMaxScaler
def plot_confusion_matrix(cm, labels_name, title):
cm = cm.astype('float') / cm.sum(axis=1)# 归一化
plt.figure()
plt.imshow(cm, interpolation='nearest') # 在特定的窗口上显示图像
plt.colorbar()
num_local = np.array(range(len(labels_name)))
plt.xticks(num_local, labels_name) # 将标签印在x轴坐标上
plt.yticks(num_local, labels_name) # 将标签印在y轴坐标上
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.savefig('result/'+title+'confusion_matrinx_svm.jpg')
plt.show()
# In[] 执行svm
# 加载数据
mode='fusion' # 选择 1d 2d 还是 fusion 对应尽1dcnn 2dcnn 与融合cnn
dataFile = 'result/'+mode+'data_feature.mat'
data = loadmat(dataFile)
train_X=data['train_X']
train_Y=data['train_Y'].reshape(-1,)
valid_X=data['valid_X']
valid_Y=data['valid_Y'].reshape(-1,)
test_X=data['test_X']
test_Y=data['test_Y'].reshape(-1,)
ss=MinMaxScaler().fit(train_X)
train_X=ss.transform(train_X)
valid_X=ss.transform(valid_X)
test_X=ss.transform(test_X)
clf = svm.SVC(C=1,gamma=0.01,kernel='rbf')
clf.fit(train_X,train_Y)
y_predict1 = clf.predict(train_X)
# 训练分类正确率计算
acc=np.sum(y_predict1==train_Y)/len(train_Y)
print('训练集分类精度为:',acc*100,'%')
y_predict2 = clf.predict(valid_X)
# 验证分类正确率计算
acc=np.sum(y_predict2==valid_Y)/len(valid_Y)
print('验证集分类精度为:',acc*100,'%')
# 测试集分类正确率计算
y_predict = clf.predict(test_X)
acc=np.sum(y_predict==test_Y)/len(test_Y)
print('测试集分类精度为:',acc*100,'%')
print('混淆矩阵')
cm=confusion_matrix(test_Y,y_predict)
# print(cm)
for i in range(10):
# 计算每一类的精确率,召回率,F1
precise=cm[i,i]/sum(cm[:,i])
recall=cm[i,i]/sum(cm[i,:])
f1=2*precise*recall/(precise+recall)
print('测试集中,第',i,
'类样本的精确率:',precise,
' 召回率为:',recall,
' F1分数为:',f1)
#混淆矩阵
labels_name=['0','1','2','3','4','5','6','7','8','9']
plot_confusion_matrix(cm, labels_name, mode)
对比实验
在上面的程序中可以通过修改mode,分别采用1d-cnn、2d-cnn与融合CNN进行特征提取SVM分类,模型对比极其方便,结果就不放了。
mode='fusion' # 选择 1d 2d 还是 fusion 对应尽1dcnn 2dcnn 与融合cnn
dataFile = 'result/'+mode+'data_feature.mat'
结果当然融合cnn++svm最好啦。就算其他方法效果好,也要调低【手动滑稽】。
5 结语
球球不要问完整代码了,完整代码和数据上面都有,稍微有点动手能力就能成功运行,非要我打包压缩好的,可以见评论区。
更多内容请点击【专栏】获取,您的点赞与收藏是我更新Python神经网络1000案例分析的动力。