1086 Tree Traversals Again (25 分) 根据先序中序写出后序

本文介绍了一种使用堆栈实现非递归中序遍历的方法,并通过给定的堆栈操作序列生成唯一二叉树。文章详细解析了如何从给出的中序遍历和先序遍历序列构建二叉树,最终输出该树的后序遍历序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.


Figure 1

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: "Push X" where X is the index of the node being pushed onto the stack; or "Pop" meaning to pop one node from the stack.

Output Specification:

For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.

Sample Input:

6
Push 1
Push 2
Push 3
Pop
Pop
Push 4
Pop
Pop
Push 5
Push 6
Pop
Pop

Sample Output:

3 4 2 6 5 1

题意:

           一开始看的时候以为只给了一种遍历来求后序遍历,其实不然,题目只给出了中序遍历的结果(出栈顺序),其实仔细观察可以发现压栈顺序就是先序遍历,因此题目给出了先序序列和中序序列。 与1020十分相似

思路:

         先根据输入整理出先序遍历和中序遍历序列,然后根据两种遍历即可建树,最后输出后序遍历即可。(在建树的时候对于下标的思考还不那么快的能够推出)

(node[root].lchild=build(prel+1,prel+p2,inl,p1-1);
    node[root].rchild=build(prel+1+p2,prer,p1+1,inr);)

#include<iostream>
#include<vector>
#include<stack>
using namespace std;
const int maxn=100;
vector<int>pre;
vector<int>in;
vector<int>ans;
stack<int>st;
struct Node
{
	int lchild,rchild;
}node[maxn];
int build(int prel,int prer,int inl,int inr)
{
	if(inl>inr)
	return 0;
	int root=pre[prel];
	int p1,p2;
	p1=inl;
	while(in[p1]!=root)
	p1++;
	p2=p1-inl;//左子树的数目
	//下面的系数还要好好想明白 
	node[root].lchild=build(prel+1,prel+p2,inl,p1-1);
	node[root].rchild=build(prel+1+p2,prer,p1+1,inr);
	return root;
}
void postorder(int root)
{
	if(node[root].lchild)
	postorder(node[root].lchild);
	if(node[root].rchild)
	postorder(node[root].rchild);
	ans.push_back(root);
}
int main()
{
	int n;
	scanf("%d",&n);
	for(int i=0;i<n*2;i++)
	{
		string s;
		cin>>s;
		if(s=="Push")
		{
			int x;
			cin>>x;
			pre.push_back(x);
			st.push(x);
		}
		else
		{
			in.push_back(st.top());
			st.pop();
		}
	}
	int root=build(0,n-1,0,n-1);
	postorder(root);
	for(int i=0;i<ans.size();i++)
	{
		printf("%d",ans[i]);
		if(i<ans.size()-1)
		printf(" ");
	}	
}

 

### 构建二叉树并获取后序遍历 通过遍历和中遍历构建二叉树的过程涉及递归方法的应用。遍历的第一个节点总是当前子树的根节点,在中遍历中找到这个根节点可以划出左子树和右子树,进而递归地处理这两个部来重建整棵树[^1]。 #### 实现过程 对于给定的遍历`preorder`和中遍历`inorder`列: - 使用哈希表存储中遍历中的每个值及其对应的索引位置以便快速查找。 - 定义辅助函数用于递归建立左右子树,该函数接收四个参数:遍历起始点、遍历结束点、中遍历起始点以及中遍历结束点。 - 如果遍历起点超过终点,则返回空指针表示无更多节点可构造; - 否则取出当前子树的根节点(即遍历区间的首个元素),创建新的树节点; - 查找此根节点在中遍历的位置从而确定其左侧区间长度作为左子树大小,并据此调整后续递归调用时传递给下一层的边界条件; - 对于新创建的节点别对其设置左右孩子为对应范围内的递归结果; - 返回新建好的节点对象供上级层连接成完整的树结构。 完成上述操作之后即可得到由输入列恢复出来的原始二叉树。最后再执行一次标准的后序遍历算法就能收集到所需的输出顺[^5]。 下面是具体的C++代码实现: ```cpp #include <unordered_map> using namespace std; struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; // Helper function to recursively construct the tree from pre-order and in-order traversals. TreeNode* buildTreeHelper(const vector<int>& preorder, const vector<int>& inorder, unordered_map<int, int>& indexMap, int pStart, int pEnd, int iStart, int iEnd) { if (pStart > pEnd || iStart > iEnd) return nullptr; // No more nodes to process. // The first node of current subtree is always root. int rootValue = preorder[pStart]; auto rootNode = new TreeNode(rootValue); // Find where this value appears within the in-order traversal list using our map. int idxInOrder = indexMap[rootValue]; // Calculate how many elements are on the left side of 'root' inside in-order sequence. int numLeftSubtreeElements = idxInOrder - iStart; // Recursively create children subtrees based upon updated indices after splitting at found position. rootNode->left = buildTreeHelper(preorder, inorder, indexMap, pStart + 1, pStart + numLeftSubtreeElements, iStart, idxInOrder - 1); rootNode->right = buildTreeHelper(preorder, inorder, indexMap, pStart + numLeftSubtreeElements + 1, pEnd, idxInOrder + 1, iEnd); return rootNode; } vector<int> postorderTraversal(TreeNode* root) { stack<TreeNode*> s; vector<int> result; TreeNode* lastVisitedNode = NULL; while (!s.empty() || root != NULL) { if (root != NULL) { s.push(root); root = root->left; } else { TreeNode* peekNode = s.top(); if (peekNode->right && lastVisitedNode != peekNode->right) { root = peekNode->right; } else { result.push_back(peekNode->val); lastVisitedNode = s.top(); s.pop(); } } } return result; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值