Conscription
Windy has a country, and he wants to build an army to protect his country. He has picked up N girls and M boys and wants to collect them to be his soldiers. To collect a soldier without any privilege, he must pay 10000 RMB. There are some relationships between girls and boys and Windy can use these relationships to reduce his cost. If girl x and boy y have a relationship d and one of them has been collected, Windy can collect the other one with 10000-d RMB. Now given all the relationships between girls and boys, your assignment is to find the least amount of money Windy has to pay. Notice that only one relationship can be used when collecting one soldier.
Input
The first line of input is the number of test case.
The first line of each test case contains three integers, N, M and R.
Then R lines followed, each contains three integers xi, yi and di.
There is a blank line before each test case.
1 ≤ N, M ≤ 10000
0 ≤ R ≤ 50,000
0 ≤ xi < N
0 ≤ yi < M
0 < di < 10000
Output
For each test case output the answer in a single line.
Sample Input
2
5 5 8
4 3 6831
1 3 4583
0 0 6592
0 1 3063
3 3 4975
1 3 2049
4 2 2104
2 2 781
5 5 10
2 4 9820
3 2 6236
3 1 8864
2 4 8326
2 0 5156
2 0 1463
4 1 2439
0 4 4373
3 4 8889
2 4 3133
Sample Output
71071
54223
AC代码
//#include<bits/stdc++.h>
#define _CRT_SBCURE_NO_DEPRECATE
#include <set>
#include <map>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <functional>
//#define UP(i,x,y) for(int i=x;i<=y;i++)
//#define DOWN(i,x,y) for(int i=x;i>=y;i--)
#define sdddd(x,y,z,k) scanf("%d%d%d%d", &x, &y, &z, &k)
#define sddd(x,y,z) scanf("%d%d%d", &x, &y, &z)
#define sdd(x,y) scanf("%d%d", &x, &y)
#define sd(x) scanf("%d", &x)
#define mp make_pair
#define pb push_back
#define lson k<<1
#define rson k<<1|1
#define mid (l+r)/2
#define ms(x, y) memset(x, y, sizeof x)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define MOD 1000000007
const int maxn = 10050;
const int INF = 0x3f3f3f3f;
const ll LINF = 0x3f3f3f3f3f3f3f3f;
int n, m, s, t;
int len;
struct road
{
int u, v, cost;
};
road G[maxn*5];
bool vis[maxn];
int par[maxn<<1];
void init()
{
for(int i = 0; i < maxn<<1; i++) par[i] = i;
}
int Find(int x)
{
return par[x]==x? x : par[x] = Find(par[x]);
}
bool same(int x, int y)
{
int fx = Find(x), fy = Find(y);
if(fx == fy)return true;
else return false;
}
void unite(int x, int y)
{
int fx = Find(x), fy = Find(y);
if(fx == fy) return;
else{
par[fx] = fy;
return;
}
}
bool cmp(road a, road b)
{
return a.cost>b.cost;
}
int kruskal()
{
sort(G, G+len, cmp);
init();
int res = 0;
for(int i = 0; i < len; i++)
{
road e = G[i];
if(!same(e.u, e.v))
{
unite(e.u, e.v);
res+=e.cost;
}
}
return res;
}
int main()
{
//freopen("out.txt", "w", stdout);
sd(t);
while(t--)
{
ms(G,0);
sddd(n,m,s);
len = 0;
int ta, tb, tc;
for(int i = 0; i < s; i++)
{
sddd(ta, tb, tc);
G[len].u = ta;
G[len].v = tb+n;
G[len++].cost = tc;
}
int ans = (n+m)*10000-kruskal();
printf("%d\n", ans);
}
return 0;
}