每日Attention学习7——Frequency-Perception Module

模块出处

[link] [code] [ACM MM 23] Frequency Perception Network for Camouflaged Object Detection


模块名称

Frequency-Perception Module (FPM)


模块作用

获取频域信息,更好识别伪装对象


模块结构

在这里插入图片描述

模块代码
import torch
import torch.nn as nn
import torch.nn.functional as F


class FirstOctaveConv(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, alpha=0.5, stride=1, padding=1, dilation=1,
                 groups=1, bias=False):
        super(FirstOctaveConv, self).__init__()
        self.stride = stride
        kernel_size = kernel_size[0]
        self.h2g_pool = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
        self.h2l = torch.nn.Conv2d(in_channels, int(alpha * in_channels),
                                   kernel_size, 1, padding, dilation, groups, bias)
        self.h2h = torch.nn.Conv2d(in_channels, in_channels - int(alpha * in_channels),
                                   kernel_size, 1, padding, dilation, groups, bias)

    def forward(self, x):
        if self.stride ==2:
            x = self.h2g_pool(x)
        X_h2l = self.h2g_pool(x)
        X_h 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值