一、引言
使用一个大型语言模型的一个令人兴奋的事情是,我们可以用它来构建一个定制的聊天机器人 (Chatbot) ,只需要很少的工作量。在这一节中,我们将探索如何利用聊天的方式,与个性化(或专门针对特定任务或行为的)聊天机器人进行扩展对话。
import openai
# 导入第三方库
openai.api_key = "sk-..."
# 设置 API_KEY, 请替换成您自己的 API_KEY
像 ChatGPT 这样的聊天模型实际上是组装成以一系列消息作为输入,并返回一个模型生成的消息作为输出的。这种聊天格式原本的设计目标是简便多轮对话,但我们通过之前的学习可以知道,它对于不会涉及任何对话的单轮任务也同样有用。
二、身份与上下文构建
接下来,我们将定义两个辅助函数。
第一个方法已经陪伴了您一整个教程,即 get_completion ,其适用于单轮对话。我们将 Prompt 放入某种类似用户消息的对话框中。另一个称为 get_completion_from_messages ,传入一个消息列表。这些消息可以来自大量不同的角色 (roles) ,我们会描述一下这些角色。
第一条消息中,我们以系统身份发送系统消息 (system message) ,它提供了一个总体的指示。系统消息则有助于设置助手的行为和角色,并作为对话的高级指示。你可以想象它在助手的耳边低语,引导它的回应,而用户不会注意到系统消息。因此,作为用户,如果你曾经使用过 ChatGPT,您可能从来不知道 ChatGPT 的系统消息是什么,这是有意为之的。系统消息的好处是为开发者提供了一种方法,在不让请求本身成为对话的一部分的情况下,引导助手并指导其回应。
在 ChatGPT 网页界面中,您的消息称为用户消息,而 ChatGPT 的消息称为助手消息。但在构建聊天机器人时,在发送了系统消息之后,您的角色可以仅作为用户 (user) ;也可以在用户和助手 (assistant) 之间交替,从而提供对话上下文。
def get_completion(prompt, model="gpt-3.5-turbo"):
messages = [{
"role": "user", "content": prompt}]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=0, # 控制模型输出的随机程度
)
return response.choices[0].message["content"]
def get_completion_from_messages(messages, model="gpt-3.5-turbo", temperature=0):
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature, # 控制模型输出的随机程度
)
# print(str(response.choices[0].message))
return response.choices[0].message["content"]