G - Fibonacci Again

本文探讨了一种特殊的斐波拉契数列,其中F(0)=7,F(1)=11,后续项遵循斐波拉契规则。文章提供了两种方法来判断数列中任意项是否能被3整除,一是利用同余定理进行数值计算,二是观察到数列每隔四项出现的周期性规律。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

There are another kind of Fibonacci numbers: F(0) = 7, F(1) = 11, F(n) = F(n-1) + F(n-2) (n>=2).

Input

Input consists of a sequence of lines, each containing an integer n. (n < 1,000,000).

Output

Print the word "yes" if 3 divide evenly into F(n).

Print the word "no" if not.

Sample Input

0
1
2
3
4
5

Sample Output

no
no
yes
no
no
no

题意:有一个斐波拉且数列,求是否f[n]能整除3

思路1:由于数据过大,会超出任何类型的表达范围,所以我用了同余定理

                (a+b) % c = a %c + b % c,能整除的部分已经被我们去除,我们考虑的是不能整除的那部分,从而值不会超出表示范围

#include<stdio.h>
const int maxn = 1000000+1;
int f[maxn] = {0}; 
int main()
{
	int n,i;
	int flag;	
	f[0] = 7;f[1] = 11; 
	for(i = 2;i <= maxn;++i)  //可用(a+b) mod c = a mod c + b mod c 
	{
	    f[i-1] %= 3;
	    f[i-2] %= 3;
	    f[i] = f[i-1]+f[i-2];
	}
	
	while(scanf("%d",&n)!=EOF)
	{
		flag = 0;		
	    if(f[n]%3 == 0)
			flag = 1;	    
	    if(flag)
	      printf("yes\n");	
	    else
	      printf("no\n");
	
	} 
	return 0;
}

思路:从第二项起,每四项输出结果重复一遍

#include<iostream>
using namespace std;
int main()
{
	int n;
	while (cin>>n)
	{
		if ((n - 2) % 4 != 0)
			cout << ("no") << endl;
		else
			cout << ("yes") << endl;
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值