二分类问题的交叉熵函数和多分类问题的交叉熵函数

二分类问题的交叉熵损失函数;

   在二分类问题中,损失函数为交叉熵损失函数。对于样本(x,y)来讲,x为样本 y为对应的标签。在二分类问题中,其取值的集合可能为{0,1},我们假设某个样本的真实标签为yt,该样本的yt=1的概率为yp,则该样本的损失函数为:

                    log(yt|yp) = - (yt*log(yp) + (1 - yt)log(1 - yp))  

如果对于整个数据集上的模型而言:其损失函数就是所有样本的点的损失函数的平均值。

多分类的问题的函数交叉熵损失函数:

在多分类问题中,损失函数也是交叉熵损失函数,对于样本(x,y)来讲,y是真实的标签,预测标签为所有标签的集合,我们假设有k个标签值,第i个样本预测为第K个标签的概率为pi,k,一共有N个样本,则总的数据集损失函数为:

                        

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值