话不多说,直接开始吧…
工作环境:VMware14
+Ubuntu18.04
内核版本:5.0.0-21
编辑device.c
#include <linux/module.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/ioport.h>
static struct resource memdev_resource[] =
{
[0] ={
.start = 0x114000a0,
.end = 0x114000a0 + 0x4,
.flags = IORESOURCE_MEM,
},
[1] ={
.start = 0x139D0000,
.end = 0x139D0000 + 0x14,
.flags = IORESOURCE_MEM,
}
};
static void memdev_release(struct device *dev)
{
printk("memdev_release\n");
return ;
}
static struct platform_device memdev_device=
{
.name = "my_memdev",
.id = -1,
.dev.release = memdev_release,
.num_resources = ARRAY_SIZE(memdev_resource),
.resource = memdev_resource,
};
static int memdev_init(void)
{
printk("memdev_init");
return platform_device_register(&memdev_device);
}
static void memdev_exit(void)
{
printk("memdev_exit");
platform_device_unregister(&memdev_device);
return;
}
MODULE_LICENSE("GPL");
module_init(memdev_init);
module_exit(memdev_exit);
编辑driver.c
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <asm/io.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <asm/switch_to.h>
#include <linux/uaccess.h>
#include <linux/slab.h>
#define MEMDEV_MAJOR 0 //预设的主设备号
#define MEMDEV_NR_DEVS 1 //次设备数
#define MEMDEV_SIZE 4096 //分配的内存空间大小
#define CLASS_NAME "memdev"
#define DEVICE_NAME "memdev"
/*mem设备描述结构体*/
struct mem_dev
{
char *data;
unsigned long size;
struct semaphore sem; /* 定义信号量 */
};
static dev_t devno;
static struct class* class_memdever;
static int mem_major = MEMDEV_MAJOR;/*主设备号*/
module_param(mem_major, int, S_IRUGO);
struct mem_dev *mem_devp; /*设备结构体指针*/
struct cdev cdev;
int mem_open(struct inode *inode, struct file *filp)
{
struct mem_dev *dev;
/*获取次设备号*/
int num = MINOR(inode->i_rdev);
if (num >= MEMDEV_NR_DEVS) /*MEMDEV_NR_DEVS设备数*/
return -ENODEV; /*尚未分配到具体设备*/
dev = &mem_devp[num];
/*将设备描述结构指针赋值给文件私有数据指针*/
filp->private_data = dev;
return 0;
}
/*文件释放函数*/
int mem_release(struct inode *inode, struct file *filp)
{
return 0;
}
/*读函数 ssize_t是有符号整型,在32位机器上等同与int,在64位机器上等同与long int*/
/*char __user从用户态的指针,往用户态传数据 size_t等同unsigned int loff_t等同long类型*/
static ssize_t mem_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
{
unsigned long p = *ppos; /*文件当前的访问位置*/
unsigned int count = size;/*请求传输的数据量*/
int ret = 0;
struct mem_dev *dev = filp->private_data; /*获得设备结构体指针*/
/* 获取信号量 */
if (down_interruptible(&dev->sem))
return -ERESTARTSYS; /* -ERESTARTSYS表示信号函数处理完毕后重新执行信号函数前的某个系统调用*/
/*判断读位置是否有效*/
if (p >= MEMDEV_SIZE)
return 0;
if (count > MEMDEV_SIZE - p)
count = MEMDEV_SIZE - p;
/*读数据到用户空间 copy_to_user(void _user *to, const void *from, int n)从from来,到to去,复制n个位*/
if (copy_to_user(buf, (void*)(dev->data + p), count))
{
ret = - EFAULT;/*指针地址无法存取*/
goto out;
}
else
{
*ppos += count;
ret = count;
printk(KERN_INFO "read %d bytes(s) from %ld\n", count, p);
}
out:
/* 释放信号量 */
up(&dev->sem);
return ret;
}
/*写函数*/
static ssize_t mem_write(struct file *filp, const char __user *buf, size_t size, loff_t *ppos)
{
unsigned long p = *ppos;
unsigned int count = size;
int ret = 0;
struct mem_dev *dev = filp->private_data; /*获得设备结构体指针*/
/* 获取信号量 */
if (down_interruptible(&dev->sem))
return -ERESTARTSYS;
/*分析和获取有效的写长度*/
if (p >= MEMDEV_SIZE)
return 0;
if (count > MEMDEV_SIZE - p)
count = MEMDEV_SIZE - p;
/*从用户空间写入数据 copy_from_user(void *to, const void _user *from, int n)*/
if (copy_from_user(dev->data + p, buf, count))
{
ret = - EFAULT;
goto out;
}
else
{
*ppos += count;
ret = count;
printk(KERN_INFO "written %d bytes(s) from %ld\n", count, p);
}
out:
/* 释放信号量 */
up(&dev->sem);
return ret;
}
/* seek文件定位函数 loff_t等同long类型 offset位移量:“+” 向文件尾移、“-”的向回移 whence移动的基准点: 0 文件头、1 当前位置、2 文件尾*/
static loff_t mem_llseek(struct file *filp, loff_t offset, int whence)
{
loff_t newpos;
switch(whence)
{
case 0: /* SEEK_SET */
newpos = offset;/*从文件头开始定位*/
break;
case 1: /* SEEK_CUR */
newpos = filp->f_pos + offset;/*从文件中间开始定位*/
break;
case 2: /* SEEK_END */
newpos = MEMDEV_SIZE -1 + offset;/*从文件尾开始定位,由于是从0开始,要减1*/
break;
default: /* can't happen */
return -EINVAL;/*EINVAL是参数值不正确*/
}
if ((newpos<0) || (newpos>MEMDEV_SIZE))
return -EINVAL;
filp->f_pos = newpos;/*返回当前文件位置*/
return newpos;
}
static struct file_operations mem_fops=
{
.owner = THIS_MODULE,/*owner是一个struct module *类型的结构体指针,通过THIS_MODULE宏来引用模块的struct module结构*/
.llseek = mem_llseek,
.read = mem_read,
.write = mem_write,
.open = mem_open,
.release = mem_release,
};
static int mem_probe(struct platform_device *pdev)
{
int result;
int i;
devno = MKDEV(mem_major, 0);/*将主设备号和次设备号转换成dev_t类型*/
/* 静态申请设备号*/
if (mem_major)
result = register_chrdev_region(devno, 1, "memdev");
else /* 动态分配设备号 */
{
result = alloc_chrdev_region(&devno, 0, 1, "memdev");
mem_major = MAJOR(devno);
}
if (result < 0)
return result;
/*初始化cdev结构*/
cdev_init(&cdev, &mem_fops);
cdev.owner = THIS_MODULE;
cdev.ops = &mem_fops;
/* 注册字符设备 */
cdev_add(&cdev, MKDEV(mem_major, 0), MEMDEV_NR_DEVS);
/* 为设备描述结构分配内存 */
/*GFP_KERNEL优先权允许kmalloc函数在系统空闲内存低于水平线min_free_pages时延迟分配函数的返回。当空闲内存太少时,kmalloc函数会使当前进程进入睡眠,等待空闲页的出现。*/
mem_devp = kmalloc(MEMDEV_NR_DEVS * sizeof(struct mem_dev), GFP_KERNEL);
if (!mem_devp) /*申请失败*/
{
result = - ENOMEM;/*核心内存不足*/
goto fail_malloc;
}
//初始化内存
memset(mem_devp, 0, sizeof(struct mem_dev));
/*为设备分配内存*/
for (i=0; i < MEMDEV_NR_DEVS; i++)
{
mem_devp[i].size = MEMDEV_SIZE;
mem_devp[i].data = kmalloc(MEMDEV_SIZE, GFP_KERNEL);
memset(mem_devp[i].data, 0, MEMDEV_SIZE);
sema_init(&mem_devp[i].sem, 1); //初始化信号量
}
class_memdever = class_create(THIS_MODULE,CLASS_NAME);
device_create(class_memdever,NULL,devno,NULL,DEVICE_NAME);
return 0;
fail_malloc:
unregister_chrdev_region(devno, 1);
return result;
}
static int mem_remove(struct platform_device *pdev)
{
device_destroy(class_memdever, devno);
class_destroy(class_memdever);
cdev_del(&cdev); /*注销设备*/
kfree(mem_devp); /*释放设备结构体内存*/
unregister_chrdev_region(MKDEV(mem_major, 0), 1); /*释放设备号*/
}
static struct platform_driver mem_driver=
{
.driver.name = "my_memdev",
.probe = mem_probe,
.remove = mem_remove,
};
static int mem_init(void)
{
printk("mem_init");
return platform_driver_register(&mem_driver);
}
static void mem_exit(void)
{
printk("mem_exit");
platform_driver_unregister(&mem_driver);
return;
}
MODULE_LICENSE("GPL");
module_init(mem_init);
module_exit(mem_exit);
编辑Makefile
ifneq ($(KERNELRELEASE),)
obj-m:=device.o driver.o
$(info "2nd")
else
KDIR := /lib/modules/$(shell uname -r)/build
#KDIR := /home/fs/linux/linux-3.14-fs4412
PWD:=$(shell pwd)
all:
$(info "1st")
make -C $(KDIR) M=$(PWD) modules
clean:
rm -f *.ko *.o *.symvers *.mod.c *.mod.o *.order
endif
编辑app.c
#include <stdio.h>
int main()
{
FILE *fp0 = NULL;
char Buf[4096];
/*初始化Buf*/
strcpy(Buf,"Mem is char dev!");
printf("BUF: %s\n",Buf);
/*打开设备文件*/
fp0 = fopen("/dev/memdev","r+");
if (fp0 == NULL)
{
printf("Open Memdev Error!\n");
return -1;
}
/*写入设备*/
fwrite(Buf, sizeof(Buf), 1, fp0);
/*重新定位文件位置(思考没有该指令,会有何后果)*/
fseek(fp0,0,SEEK_SET);
/*清除Buf*/
strcpy(Buf,"Buf is NULL!");
printf("BUF: %s\n",Buf);
/*读出设备*/
fread(Buf, sizeof(Buf), 1, fp0);
/*检测结果*/
printf("BUF: %s\n",Buf);
return 0;
}
编译、加载和测试
- 命令行输入make进行编译,可以看到生成了一个
device.ko
和一个driver.ko
- 输入lsmod查看模块
- 输入cat /proc/devices查看设备
- 依次输入insmod device.koinsmod driver.ko, 一般来说应该先注册设备后注册驱动
- 这时再输入cat /proc/devices查看设备,就会发现240
memdev
设备出现了
- 输入ls /dev查看设备文件,在
/dev
目录下生成了memdev
文件夹
- 使用gcc编译app.c,然后执行
- 输入dmesg | tail查看系统信息,可以看到设备和驱动的加载信息
- 最后卸载驱动 rmmod driver.ko 、卸载设备 rmmod device.ko