Problem Description
This is Kolakosiki sequence: 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1…….
This sequence consists of 1 and 2,
and its first term equals 1.
Besides, if you see adjacent and equal terms as one group, you will get 1,22,11,2,1,22,1,22,11,2,11,22,1…….
Count number of terms in every group, you will get the sequence itself. Now, the sequence can be uniquely determined. Please tell HazelFan its nth
element.
Input
The first line contains a positive integer T(1≤T≤5),
denoting the number of test cases.
For each test case:
A single line contains a positive integer n(1≤n≤107).
For each test case:
A single line contains a positive integer n(1≤n≤107).
Output
For each test case:
A single line contains a nonnegative integer, denoting the answer.
A single line contains a nonnegative integer, denoting the answer.
Sample Input
2 1 2
Sample Output
1 2题意即为 每连续的相同数字即为一组,ai表示第i组有ai个数。例如a3为2,表明第三组有两个数,即a4=a5=1(因为第二组的数为2,要与上一组的数不同)。因为a4为1,第四组就为一个数,即a6=2.#include<iostream> using namespace std; // 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1,2,1,1,2,1,2,2,1,1 Kolakoski数列 int a[10000000]= {0}; int main() { int t; a[1]=1; a[2]=2; a[3]=2; int m=3; //记录当前ai为第m组 for(int i=4; i<10000000; i++) { if(a[m]==1) { 如果当前为单数组,保持与ai-1不同就行 if(a[i-1]==1) a[i]=2; else a[i]=1; m++; } else { 如果当前为双数组,保持ai和ai+1与ai-1不同就行。 if(a[i-1]==1) a[i+1]=a[i]=2; else a[i+1]=a[i]=1; m++; i++; } } cin>>t; while(t--) { int n; cin>>n; cout<<a[n]<<endl; } return 0; }