Problem Description
This is Kolakosiki sequence:
1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1…….
This sequence consists of 1
and 2,
and its first term equals 1.
Besides, if you see adjacent and equal terms as one group, you will get 1,22,11,2,1,22,1,22,11,2,11,22,1…….
Count number of terms in every group, you will get the sequence itself. Now, the sequence can be uniquely determined. Please tell HazelFan its
nth
element.
Input
The first line contains a positive integer
T(1≤T≤5),
denoting the number of test cases.
For each test case:
A single line contains a positive integer n(1≤n≤107).
For each test case:
A single line contains a positive integer n(1≤n≤107).
Output
For each test case:
A single line contains a nonnegative integer, denoting the answer.
A single line contains a nonnegative integer, denoting the answer.
Sample Input
2 1 2
Sample Output
1 2思路:如果我们把连续的相同数看作一组的话,整个数列的定义就只有两句话: a(1) = 1 , a(n) 表示第 n 组数的长度。例如,a(6) = 2,就表明第 6 组数(从第 8 个数算起)的长度就是 2。注意,有了这几个条件,整个序列就已经唯一地确定了!a(1) = 1 就表明第一组数只有一个数,因此下一个数必须要换成 2 ,因此 a(2) = 2 ;而 a(2) = 2 又说明这个 2 必须要连着出现两个,因此 a(3) = 2;而 a(3) = 2 就表明数列接下来要有两个 1 ,等等。也就是说,生成这个数列的“参数”就是这个数列本身。#include <iostream> #include <cstdio> using namespace std; const int maxn=1e7+10; int a[maxn]; int main() { int t; int n; a[1]=1; a[2]=2; a[3]=2; int cur=3; int flag=2; for(int i=4;i<maxn;) { int num=a[cur]; for(int j=0;j<num;j++) { if(flag==2) a[i]=1; else a[i]=2; if(j==num-1) flag=a[i]; i++; } cur++; } cin>>t; while(t--) { cin>>n; cout<<a[n]<<endl; } return 0; }