目标检测中的数据增强

本文介绍了在目标检测任务中使用数据增强的实践,包括旋转、Mosaic和Mixup等技术,通过修改代码实现对图像及其边界框的变换,以增加模型训练的多样性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整个代码参考:bubbliiiing/object-detection-augmentation。

random_data.py 

import cv2
import numpy as np
from PIL import Image, ImageDraw


def rand(a=0, b=1):
    return np.random.rand()*(b-a) + a

def get_random_data(annotation_line, input_shape, jitter=.3, hue=.1, sat=0.7, val=0.4, random=True):
    line    = annotation_line.split()
    #------------------------------#
    #   读取图像并转换成RGB图像
    #------------------------------#
    image   = Image.open(line[0])
    image   = image.convert('RGB')

    #------------------------------#
    #   获得图像的高宽与目标高宽
    #
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一壶浊酒..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值