文章目录
- 一、不考虑返回值时可直接使用threading/multiprocessing,类似的Java的Thread及Runable也无法获取返回值(Callable可以)
- 二、使用ThreadPoolExecutor/ProcessPoolExecutor,同Java的ThreadPoolExecutor一样从Future获取子线程/进程的返回值会阻塞
- 三、使用asyncio协程实现“多线程”返回值获取
- 四、使用multiprocessing 的Pool可以通过callback回调函数来获取多进程的返回值,类似Java spring框架的ThreadPoolTaskExecutor#submitListenable(...)
python为解释性语言,解释器全局锁使同一时刻只能有一个线程执行,故python的多线程不是真正的多线程,在io密集型应用有更好的‘并行’效果,但python多进程能真正并很简单的实现并行。
一、不考虑返回值时可直接使用threading/multiprocessing,类似的Java的Thread及Runable也无法获取返回值(Callable可以)
import threading
import multiprocessing
import time
import psutil
def calc_square(sleep_second,n):
time.sleep(sleep_second)
print("输入:",n)
return n**2
if __name__ == '__main__':
#t1=threading.Thread(target=calc_square,args=(3,5))
#t2=threading.Thread(target=calc_square,args=(3,6))
t1=multiprocessing.Process(target=calc_square,args=(3,5))
t2=multiprocessing.Process(target=calc_square,args=(3,6))
t1.start()
t2.start()
t1.join()
t2.join()
二、使用ThreadPoolExecutor/ProcessPoolExecutor,同Java的ThreadPoolExecutor一样从Future获取子线程/进程的返回值会阻塞
# -*- coding: utf-8 -*-
import time
import os
from concurrent.futures import ThreadPoolExecutor
#from concurrent.futures.process import ProcessPoolExecutor
#from concurrent.futures.thread import ThreadPoolExecutor
def calc_square(sleep_second, n):
time.sleep(sleep_second)
print(f"输入:{n},{os.getpid()}")
return n ** 2
if __name__ == '__main__':
pool = ThreadPoolExecutor(max_workers=4)
#pool = ProcessPoolExecutor(max_workers=4)
for i in (range(10)):
future = pool.submit(calc_square, i, i)
print(f"thread:{i}, {future.result()}")
三、使用asyncio协程实现“多线程”返回值获取
# -*- coding: utf-8 -*-
import asyncio
import os
# 类似JS async await
async def calc_square(sleep_second, n):
print(f"输入:{n},进程ID:{os.getpid()}")
# 执行到这里await挂起当前任务,其它协程可以获取CPU时间片
await asyncio.sleep(sleep_second)
return n ** 2
if __name__ == '__main__':
loop = asyncio.get_event_loop()
future = asyncio.gather(calc_square(1, 1), calc_square(2, 2), calc_square(5, 5))
future.add_done_callback(lambda res: print(res.result()))
# 此处才真正开始伪并行运行
loop.run_until_complete(future)
四、使用multiprocessing 的Pool可以通过callback回调函数来获取多进程的返回值,类似Java spring框架的ThreadPoolTaskExecutor#submitListenable(…)
# -*- coding: utf-8 -*-
import time
import os
from multiprocessing import Pool
def calc_square(sleep_second, n):
print(f"输入:{n},进程ID:{os.getpid()}")
time.sleep(sleep_second)
return n ** 2
if __name__ == '__main__':
pool = Pool(processes=8)
for i in (range(10)):
pool.apply_async(calc_square, args=(i, i ** 2), callback=lambda res: print(res))
pool.close()
pool.join()