解决:RuntimeError: Mismatch in shape: grad_output[0] has a shape of torch.Size([1]) and output[0] has

解决:RuntimeError: Mismatch in shape: grad_output[0] has a shape of torch.Size([1]) and output[0] has a shape of torch.Size([])

解决方法:
找到代码中有无该句

one = torch.FloatTensor([1]) 

将其替换为

one = torch.tensor(1, dtype=torch.float)
optimizer: AdamW(lr=0.0001, momentum=0.937) with parameter groups 113 weight(decay=0.0), 138 weight(decay=0.05468750000000001), 134 bias(decay=0.0) Image sizes 640 train, 640 val Using 8 dataloader workers Logging results to runs\detect\train10 Starting training for 600 epochs... Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 0%| | 0/82 [00:00<?, ?it/s]CARA_Block input shape: torch.Size([14, 64, 80, 80]) CARA_Block output shape: torch.Size([14, 64, 80, 80]) CARA_Block input shape: torch.Size([14, 128, 40, 40]) CARA_Block output shape: torch.Size([14, 128, 40, 40]) CARA_Block input shape: torch.Size([14, 256, 20, 20]) CARA_Block output shape: torch.Size([14, 256, 20, 20]) 0%| | 0/82 [00:01<?, ?it/s] Traceback (most recent call last): File "E:\WanHua Industria Parkl\code\YOLOv11\newmodels\traincus.py", line 8, in <module> model.train( File "D:\Anaconda\lib\site-packages\ultralytics\engine\model.py", line 810, in train self.trainer.train() File "D:\Anaconda\lib\site-packages\ultralytics\engine\trainer.py", line 208, in train self._do_train(world_size) File "D:\Anaconda\lib\site-packages\ultralytics\engine\trainer.py", line 393, in _do_train self.optimizer_step() File "D:\Anaconda\lib\site-packages\ultralytics\engine\trainer.py", line 599, in optimizer_step self.ema.update(self.model) File "D:\Anaconda\lib\site-packages\ultralytics\utils\torch_utils.py", line 544, in update v += (1 - d) * msd[k].detach() RuntimeError: The size of tensor a (32) must match the size of tensor b (80) at non-singleton dimension 3
03-15
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

碧寒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值