ViG核心代码及网络结构图

该博客详细介绍了DeepGCN模型的构建过程,包括其核心组件如Grapher和FFN的实现,以及使用gelu激活函数和stochastic depth策略。模型通过多层图卷积和注意力机制处理输入特征,适用于图像识别等任务。

ti_vig

def pvig_ti_224_gelu(pretrained=False, **kwargs):
    class OptInit:
        def __init__(self, num_classes=1000, drop_path_rate=0.0, **kwargs):
            self.k = 9 # 邻域的数目,默认为9
            self.conv = 'mr' # 图卷积层=mr
            self.act = 'gelu' # 激活层=gelu
            self.norm = 'batch' # batch or instance normalization {batch, instance}
            self.bias = True # bias of conv layer True or False
            self.dropout = 0.0 # dropout rate
            self.use_dilation = True # use dilated knn or not
            self.epsilon = 0.2 # stochastic epsilon for gcn
            self.use_stochastic = False # stochastic for gcn, True or False
            self.drop_path = drop_path_rate
            self.blocks = [2,2,6,2] # number of basic blocks in the backbone
            self.channels = [48, 96, 240, 384] # number of channels of deep features
            self.n_classes = num_classes # Dimension of out_channels
            self.emb_dims = 1024 # Dimension of embeddings

    opt = OptInit(**kwargs)
    model = DeepGCN(opt)
    model.default_cfg = default_cfgs['vig_224_gelu']
    return model

DeepGCN

class DeepGCN(torch.nn.Module):
    def __init__(self, opt):
        super(DeepGCN, self).__init__()
        print(opt)
        k = opt
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值