第二章 Multi-LiDAR Extrinsic Calibration (1)

《 Targetless Extrinsic Calibration of Multiple Small FoV LiDARs and Cameras using Adaptive Voxelization》理论阅读



前言

主要记录论文mlcc关于多雷达外参标定的部分,由于理论过程使用Latex导致字数超过限制,因此将理论推导拆分为多个章节记录。


一、文章内容

            With adaptive voxelization, we can obtain a set of voxels of different sizes. Each voxel contains points that are roughly on a plane and creates a planar constraint for all LiDAR poses that have points in this voxel. More specifically, considering the l − t h l-th lth voxel consisting of a group of points P l = G P L i , t j \mathcal{P}_{l}={_{}^{G}P_{L_{i},t_{j}}} Pl=GPLi,tj scanned by L i ∈ L L_{i} \in \mathcal{L} LiL at times t j ∈ T t_{j} \in \mathcal{T} tjT.We define a point cloud consistency indicator c l ( L i G T t j ) _{c_{l}}(_{L_{i}}^{G}T_{t_{j}}) cl(LiGTtj) which forms a factor on S \mathcal{S} S and E L \mathcal{E}_{L} EL shown in Fig. 4(a). Then, the base LiDAR trajectory and extrinsic are estimated by optimizing the factor graph. A natural choice for the consistency indicator c l ( ⋅ ) c_{l}(\cdot) cl() would be the summed Euclidean distance between each G P L i , t j _{}^{G}P_{L_{i},t_{j}} GPLi,tj the plane to be estimated (see Fig. 4(b)). Taking account of all such indicators within the voxel map, we could formulate the problem as arg ⁡ min ⁡ S , E L , n l , q l ∑ l ( 1 N l ∑ k = 1 N l ( n l T ( G p k − q l ) ) 2 ) ⏟ l − t h   f a c t o r \arg\min_{{\mathcal{S},\mathcal{E}_{L},{n}_{l},{q}_{l}}}\sum_{l}\underbrace{{\left(\frac{1}{N_{l}}\sum_{k=1}^{{N_{l}}}\left({n}_{l}^{T}\left(^{G}{p}_{k}-{q}_{l}\right)\right)^{2}\right)}}_{{l\mathrm{-th~factor}}} argS,EL,nl,qlminllth factor (Nl1k=1Nl(nlT(Gpkql))2), where G p k ∈ P l _{}^{G}p_{k}\in \mathcal{P}_{l} GpkPl, N l N_{l} Nl is the total number of points in P l \mathcal{P}_{l} Pl, n l n_{l} nl is the normal vector of the plane and q l q_{l} ql is a point on this plane.
在这里插入图片描述
Fig.4 :(a) The l − t h l-th lth factor item relating to S \mathcal{S} S and E L \mathcal{E}_{L} EL with L i ∈ L L_{i} \in \mathcal{L} LiL and t j ∈ T t_{j} \in \mathcal{T} tjT . (b) The distance from the point G p k _{}^{G}p_{k} Gpk to the plane π \pi π.

         通过自适应体素化,我们可以获得一组不同大小的体素。每个体素包含大致在一个平面上的点,并为所有包含在此体素内的雷达姿态创建一个平面约束。更具体地说,考虑由 L i ∈ L L_{i} \in \mathcal{L} LiL在时刻 t j ∈ T t_{j} \in \mathcal{T} tjT扫描的一组点组成的第 l l l个体素。我们定义了一个点云一致性指标 c l ( L i G T t j ) _{c_{l}}(_{L_{i}}^{G}T_{t_{j}}) cl(LiGTtj) ,它在图4(a)中形成了 S \mathcal{S} S E L \mathcal{E}_{L} EL上的因子。然后,通过优化因子图来估计基准雷达的轨迹和外参。对于一致性指标 c l ( ⋅ ) c_{l}(\cdot) cl()的一个自然选择是计算每个 G P L i , t j _{}^{G}P_{L_{i},t_{j}} GPLi,tj到平面的欧几里得距离之和(见图4(b))。考虑到体素图中所有这样的指标,我们可以将问题表述为
arg ⁡ min ⁡ S , E L , n l , q l ∑ l ( 1 N l ∑ k = 1 N l ( n l T ( G p k − q l ) ) 2 ) ⏟ l − t h   f a c t o r \arg\min_{{\mathcal{S},\mathcal{E}_{L},{n}_{l},{q}_{l}}}\sum_{l}\underbrace{{\left(\frac{1}{N_{l}}\sum_{k=1}^{{N_{l}}}\left({n}_{l}^{T}\left(^{G}{p}_{k}-{q}_{l}\right)\right)^{2}\right)}}_{{l\mathrm{-th~factor}}} argS,EL,nl,qlminllth factor (Nl1k=1Nl(nlT(Gpkql))2)
,其中 G p k ∈ P l _{}^{G}p_{k}\in \mathcal{P}_{l} GpkPl N l N_{l} Nl P l \mathcal{P}_{l} Pl中所有点的总点数, n l n_{l} nl 是平面的法向量, q l q_{l} ql 是平面中的一点。
在这里插入图片描述

Fig.4 :(a) 第 l l l 个因子项,涉及 S \mathcal{S} S E L \mathcal{E}_{L} EL,其中 L i ∈ L L_{i} \in \mathcal{L} LiL t j ∈ T t_{j} \in \mathcal{T} tjT 。 (b)点 G p k _{}^{G}p_{k} Gpk到平面 π \pi π的距离.

              It is noticed that the optimization variables ( n l , q l ) (n_{l}, q_{l}) (nl,ql) in (2) could be analytically solved (see Appendix A and the resultant cost function (3) is over the LiDAR pose L i G T t j _{L_{i}}^{G}T_{t_{j}} LiGTtj (hence the base LiDAR trajectory S \mathcal{S} S and extrinsic E L \mathcal{E}_{L} EL) only, as follows arg ⁡ min ⁡ S , E L ∑ l λ 3 ( A l ) \arg\min_{\mathcal{S},\mathcal{E}_{L}}\sum_{l}^{}\lambda_{3}(A_{l}) argS,ELminlλ3(Al) where λ 3 ( A l ) \lambda_{3}(A_{l}) λ3(Al) denotes the minimal eigenvalue of matrix A l A_{l} Al defined as A l = 1 N l ∑ k = 1 N l G p k ⋅ G p k T − q l ∗ ⋅ q l ∗ T , q l ∗ = 1 N l ∑ k = 1 N l G p k A_{l}=\frac{1}{N_{l}}\sum_{k=1}^{N_{l}}{_{}^{G}p_{k} \cdot_{}^{G}p_{k}^{T}-q_{l}^{\ast}\cdot {q_{l}^{\ast}}^{T}},q_{l}^{\ast} =\frac{1}{N_{l}}\sum_{k=1}^{N_{l}}{_{}^{G}p_{k}} Al=Nl1k=1NlGpkGpkTqlqlT,ql=Nl1k=1NlGpk
. To allow efficient optimization in (3), we derive the closedform derivatives w.r.t the optimization variable x x x up to secondorder (the detailed derivation from (3) to (5) is elaborated in Appendix B):
λ 3 ( x ⊞ δ x ) ≈ λ 3 ( x ) + J ˉ δ x + 1 2 δ x T H ˉ δ x \lambda_3({x}\boxplus\delta{x})\approx\lambda_3({x})+{\bar{J}}\delta{x}+\frac12\delta{x}^T{\bar{H}}\delta{x} λ3(xδx)λ3(x)+Jˉδx+21δxTHˉδx
,where J ˉ \bar{J} Jˉ is the Jacobian matrix, and H ˉ \bar{H} Hˉ is the Hessian matrix.The δ x \delta{x} δx is a small perturbation of the optimization variable x x x:
x = [ ⋯ L 0 G R t j L 0 G t t j ⋯ ⏟ S ⋯ L i L 0 R L i L 0 t ⋯ ⏟ E L ] {x}=[\underbrace{\cdots_{L_{0}}^{G}{R}_{t_{j}}\quad L_{0}^{G}{t}_{t_{j}}\cdots}_{\mathcal{S}}\underbrace{\cdots {}_{L_{i}}^{L_{0}}{R}\quad{}_{L_{i}}^{L_{0}}{t}\cdots}_{\mathcal{E}_{L}}] x=[S L0GRtjL0GttjEL LiL0RLiL0t]
.Then the optimal x ∗ x^{\ast} x could be determined by iteratively solving (6) with the LM method and updating the δ x \delta{x} δx to x x x.
( H ˉ + μ I ) δ x = − J ˉ T (\bar{{H}}+\mu{I}) \delta{x}=-\bar{{J}}^T (Hˉ+μI)δx=JˉT

         注意到优化变量 ( n l , q l ) (n_{l}, q_{l}) (nl,ql)在方程(2)中可以解析求解(详见附录A),由此得到的损失函数(3)仅关于雷达姿态 L i G T t j _{L_{i}}^{G}T_{t_{j}} LiGTtj(即基准雷达轨迹 S \mathcal{S} S和外参 E L \mathcal{E}_{L} EL),如下所示: arg ⁡ min ⁡ S , E L ∑ l λ 3 ( A l ) \arg\min_{\mathcal{S},\mathcal{E}_{L}}\sum_{l}^{}\lambda_{3}(A_{l}) argS,ELminlλ3(Al)其中 λ 3 ( A l ) \lambda_{3}(A_{l}) λ3(Al)表示矩阵 A l A_{l} Al的最小特征值, A l A_{l} Al定义为 A l = 1 N l ∑ k = 1 N l G p k ⋅ G p k T − q l ∗ ⋅ q l ∗ T , q l ∗ = 1 N l ∑ k = 1 N l G p k A_{l}=\frac{1}{N_{l}}\sum_{k=1}^{N_{l}}{_{}^{G}p_{k} \cdot_{}^{G}p_{k}^{T}-q_{l}^{\ast}\cdot {q_{l}^{\ast}}^{T}},q_{l}^{\ast} =\frac{1}{N_{l}}\sum_{k=1}^{N_{l}}{_{}^{G}p_{k}} Al=Nl1k=1NlGpkGpkTqlqlT,ql=Nl1k=1NlGpk
。为了使式(3)中的优化高效,我们推导了优化变量 x x x的二阶闭式导数(从(3)到(5)的详细推导见附录B):
λ 3 ( x ⊞ δ x ) ≈ λ 3 ( x ) + J ˉ δ x + 1 2 δ x T H ˉ δ x \lambda_3({x}\boxplus\delta{x})\approx\lambda_3({x})+{\bar{J}}\delta{x}+\frac12\delta{x}^T{\bar{H}}\delta{x} λ3(xδx)λ3(x)+Jˉδx+21δxTHˉδx
。其中 J ˉ \bar{J} Jˉ是雅可比矩阵, H ˉ \bar{H} Hˉ是海森矩阵。 δ x \delta{x} δx是优化变量 x x x的小扰动:
x = [ ⋯ L 0 G R t j L 0 G t t j ⋯ ⏟ S ⋯ L i L 0 R L i L 0 t ⋯ ⏟ E L ] {x}=[\underbrace{\cdots_{L_{0}}^{G}{R}_{t_{j}}\quad L_{0}^{G}{t}_{t_{j}}\cdots}_{\mathcal{S}}\underbrace{\cdots_{L_{i}}^{L_{0}}{R}\quad {}_{L_{i}}^{L_{0}}{t}\cdots}_{\mathcal{E}_{L}}] x=[S L0GRtjL0GttjEL LiL0RLiL0t]
。然后,最优解 x ∗ x^{\ast} x可以通过迭代求解公式(6)并使用LM的方法更新 δ x \delta{x} δx x x x来确定。
( H ˉ + μ I ) δ x = − J ˉ T (\bar{{H}}+\mu{I}) \delta{x}=-{\bar{{J}}}^T (Hˉ+μI)δx=JˉT

二、 参考文献

[1]《Targetless Extrinsic Calibration of Multiple Small FoV LiDARs and Cameras using Adaptive Voxelization》

[2]《BALM: Bundle Adjustment for Lidar Mapping》

[3]《BALM论文阅读》——epsilonjohn的博客文章

[4]《A micro Lie theory for state estimation in robotics》

[5]《多个LiDAR-Camera无目标跨视角联合标定方法》

[6]《如何用法向量求点到平面距离_【立体几何】用空间向量求点到面的距离》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值