下面是训练集和测试集的部分图像
SVM模型代码(进行了调参):
#!/usr/bin/python
# -*- coding:utf-8 -*-
import numpy as np
import pandas as pd
from sklearn import svm
import matplotlib.colors
import matplotlib.pyplot as plt
from PIL import Image
from sklearn.metrics import accuracy_score
import os
from sklearn.model_selection import GridSearchCV
from time import time
def show_accuracy(a, b, tip):
acc = a.ravel() == b.ravel()
print(tip + '正确率:%.2f%%' % (100 * np.mean(acc)))
def save_image(im, i):
im *= (256 / 17)
im = 255 - im
a = im.astype(np.uint8)
output_path = './HandWritten'
if not os.path.exists(output_path):
os.mkdir(output_path)
Image.fromarray(a).resize(size=(100, 100)).save(output_path + ('\\%d.png' % i))
if __name__ == "__main__":
print('Load Training File Start...')
data = pd.read_csv('optdigits.tra', header=None)
x, y = data[list(range(64))], data[64]
x, y = x.values, y.values # 转换为numpy形式,返回DataFrame的Numpy表示。
images = x.reshape(-1, 8, 8) # 不知道多少行,反正每一行是一个8*8的矩阵,对应着图片
print('images.shape = ', images.shape)
y = y.ravel().astype(np.int)
print('Load Test Data Start...')
data = np.loadtxt('optdigits.tes', dtype=np.float, delimiter=',')
x_test, y_test = np.split(data, (-1,), axis=1) # axis=1 按行方向拆分数据,也就是水平方向
print(y_test.shape)
images_