POJ 3624 Charm Bracelet

本文介绍了一个经典的01背包问题案例,通过动态规划算法解决选择最佳魅力饰品组合的问题,在重量限制下最大化饰品的总吸引力。

Charm Bracelet
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 41212 Accepted: 17929

Description

Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).

Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di

Output

* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints

Sample Input

4 6
1 4
2 6
3 12
2 7

Sample Output

23

01背包水题

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int dp[40010];
int D[40010];
int W[40010];
int main(){
	//freopen("in.txt","r",stdin);
	int n,m;
	while(cin>>n>>m){
		memset(dp,0,sizeof(dp));
		for(int i=1;i<=n;i++) scanf("%d%d",&W[i],&D[i]);
		for(int i=1;i<=n;i++){
			for(int j=m;j>=W[i];j--){
				dp[j]=max(dp[j],dp[j-W[i]]+D[i]);
			}
		}
		//cout<<dp[m]<<endl;
		int ans=-1;
		for(int i=1;i<=m;i++) ans=max(ans,dp[i]);
		cout<<ans<<endl;
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值