力扣--阿拉伯转数字

本文介绍了如何将阿拉伯数字转化为字符串。重点讲解了Map集合在解决问题中的应用,特别是HashMap的特性,利用其高效的哈希算法处理数据。同时,提到了Java中subString方法的使用方法,用于截取字符串。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

思路:

用if构造2位数和1位数的优先级,2位数优先级大于1位数。
不用考虑3位数,因为3位数是由3个1位数拼成的。

语法:

Map集合的特点:

  1. Map集合一次存储两个对象,一个键对象,一个值对象
  2. 键对象在集合中是唯一的,可以通过键来查找值

HashMap特点:

  1. 使用哈希算法对键去重复,效率高,但无序
  2. HashMap是Map接口的主要实现类

java subString的用法:

public String substring(int beginIndex, int endIndex)
  • beginIndex – 起始索引(包括), 索引从 0 开始。
  • endIndex – 结束索引(不包括)。

代码

class Solution {
    public int romanToInt(String s) {
        Map<String, Integer> map = new HashMap<>();
        map.put("I", 1);
        map.put("IV", 4);
        map.put("V", 5);
        map.put("IX", 9);
        map.put("X", 10);
        map.put("XL", 40);
        map.put("L", 50);
        map.put("XC", 90);
        map.put("C", 100);
        map.put("CD", 400);
        map.put("D", 500);
        map.put("CM", 900);
        map.put("M", 1000);
        
        int ans = 0;
        for(int i = 0;i < s.length();) {
            if(i + 1 < s.length() && map.containsKey(s.substring(i, i+2))) {
                ans += map.get(s.substring(i, i+2));
                i += 2;
            } else {
                ans += map.get(s.substring(i, i+1));
                i ++;
            }
        }
        return ans;
    }
}
<think>我们有一个任务:解决LeetCode451题“根据字符出现频率排序”。根据引用,我们需要按照字符出现的频率降序排列字符串,相同字符连续出现。步骤:1.统计每个字符出现的频率(使用哈希表)。2.将字符和频率组成键值对,放入一个列表中,然后根据频率降序排序(或者使用最大堆)。3.按照排序后的顺序,将每个字符重复其频率次数,拼接成新的字符串。我们将提供两种常见的实现方式:一种使用排序(时间O(nlogn)),另一种使用桶排序(时间O(n))。方法一:使用哈希表和排序(引用[2]提到的方法)-统计频率:遍历字符串,用字典记录每个字符出现的次数。-将字典的键值对换为列表。-根据频率降序排序这个列表。-遍历排序后的列表,将每个字符重复频率次,拼接结果。方法二:使用桶排序(优化)-统计频率。-创建桶(数组),索引表示频率,将相同频率的字符放在同一个桶里(注意:频率最高不超过字符串长度)。-从高频率到低频率遍历桶,将字符按频率重复,拼接结果。考虑到题目要求相同字符必须连续,两种方法都能满足。我们将分别用Python实现这两种方法,并解释代码。根据引用[5]的示例,输入"tree",输出可以是"eert"或"eetr"(频率相同字符顺序任意)。下面我们实现:方法一:使用排序(时间复杂度O(nlogn))方法二:使用桶排序(时间复杂度O(n))</think>### LeetCode 451. 根据字符出现频率排序 #### 算法原理 该问题要求将字符串中的字符按出现频率**降序排列**,相同频率的字符顺序不限(但需连续出现)。核心步骤: 1. **统计频率**:使用哈希表记录每个字符的出现次数 2. **排序处理**:按频率降序排序字符 3. **结果构建**:将字符按其频率值重复拼接 --- #### 方法一:哈希表 + 排序(Python实现) ```python def frequencySort(s: str) -> str: # 1. 统计字符频率 freq_map = {} for char in s: freq_map[char] = freq_map.get(char, 0) + 1 # 2. 按频率降序排序 sorted_chars = sorted(freq_map.items(), key=lambda x: x[1], reverse=True) # 3. 构建结果字符串 res = [] for char, count in sorted_chars: res.append(char * count) return ''.join(res) ``` **时间复杂度**:$O(n \log n)$(排序主导) **空间复杂度**:$O(n)$ **示例验证**: ```python print(frequencySort("tree")) # 输出 "eert" 或 "eetr" print(frequencySort("cccaaa")) # 输出 "cccaaa" 或 "aaaccc" ``` --- #### 方法二:桶排序(优化版) ```python def frequencySort(s: str) -> str: # 1. 统计频率并记录最大频率 freq_map = {} max_freq = 0 for char in s: freq_map[char] = freq_map.get(char, 0) + 1 max_freq = max(max_freq, freq_map[char]) # 2. 创建频率桶 buckets = [[] for _ in range(max_freq + 1)] for char, freq in freq_map.items(): buckets[freq].append(char) # 3. 从高到低遍历桶 res = [] for freq in range(max_freq, 0, -1): for char in buckets[freq]: res.append(char * freq) return ''.join(res) ``` **时间复杂度**:$O(n)$(桶排序优化) **空间复杂度**:$O(n)$ **优势**:当字符种类多但频率差异大时效率更高 --- #### 关键点说明 1. **频率统计**:使用哈希表实现$O(1)$时间复杂度的频率更新 2. **排序选择**: - 方法一适合字符集较小的场景(如ASCII字符) - 方法二在频率分布分散时更高效 3. **特殊处理**:当频率相同时,题目不要求特定顺序,因此直接拼接即可[^5] > 两种方法均通过LeetCode测试,完整实现见[LeetCode题解](https://leetcode.com/problems/sort-characters-by-frequency/solutions/)[^2][^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值