你作为计算机视觉领域专家,请为 下列两个代码模块写篇论文(符合期刊论文要求),要求:
1. 包含引言、文献综述、方法论、实验结果、讨论、结论六大核心章节
2. 每个章节需列出3-5个关键论点并标注理论依据(含有参考文献)
3. 根据两个代码模块写出研究方法(包含计算公式)
4. 重点突出[模块的创新点]
5.为两个模块分别起个名字(根据模块实际作用起名字)并且为论文起一个名字
import torch
import torch.nn as nn
import torch.nn.functional as F
class ChannelAttention(nn.Module):
"""通道注意力机制,增强重要特征"""
def __init__(self, in_planes, ratio=16):
super().__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc = nn.Sequential(
nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False),
nn.ReLU(),
nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc(self.avg_pool(x))
max_out = self.fc(self.max_pool(x))
out = avg_out + max_out
return x * self.sigmoid(out) # 直接应用注意力权重到输入
class HaarDownsampling(nn.Module):
"""稳定版Haar小波下采样层"""
def __init__(self, in_ch):
super().__init__()
# 定义Haar小波核
ll_kernel = torch.tensor([[1, 1], [1, 1]], dtype=torch.float32) / 4.0
hl_kernel = torch.tensor([[1, -1], [1, -1]], dtype=torch.float32) / 4.0
lh_kernel = torch.tensor([[1, 1], [-1, -1]], dtype=torch.float32) / 4.0
hh_kernel = torch.tensor([[1, -1], [-1, 1]], dtype=torch.float32) / 4.0
# 组合核并重复用于所有输入通道
kernels = torch.stack([ll_kernel, hl_kernel, lh_kernel, hh_kernel])
kernels = kernels.unsqueeze(1) # [4, 1, 2, 2]
kernels = kernels.repeat(in_ch, 1, 1, 1) # [4*in_ch, 1, 2, 2]
# 注册为不可训练参数
self.register_buffer('weight', kernels)
self.groups = in_ch
# 添加通道注意力
self.ca = ChannelAttention(in_ch * 4)
def forward(self, x):
# 使用分组卷积实现小波变换
x = F.conv2d(
x,
self.weight,
stride=2,
groups=self.groups
)
# 应用通道注意力
return self.ca(x)
class StableDWTBlock(nn.Module):
"""稳定版小波下采样模块"""
def __init__(self, c1, c2, *args, **kwargs):
super().__init__()
self.c1 = c1
self.c2 = c2
# Haar小波变换层
self.haar = HaarDownsampling(c1)
# 残差路径(保留原始特征)
self.residual = nn.Sequential(
nn.Conv2d(c1, c1, kernel_size=3, stride=2, padding=1, groups=c1),
nn.Conv2d(c1, c1, kernel_size=1),
nn.BatchNorm2d(c1),
nn.SiLU(inplace=True)
)
# 特征融合模块 - 避免通道数为0的问题
self.feature_fusion = nn.Sequential(
nn.Conv2d(c1 * 5, c2, kernel_size=1),
nn.BatchNorm2d(c2),
nn.SiLU(inplace=True),
nn.Conv2d(c2, c2, kernel_size=3, padding=1),
nn.BatchNorm2d(c2),
nn.SiLU(inplace=True)
)
# 空间注意力层
self.spatial_att = nn.Sequential(
nn.Conv2d(c2, 1, kernel_size=1),
nn.Sigmoid()
)
# 输出层
self.output_conv = nn.Conv2d(c2, c2, kernel_size=1)
def forward(self, x):
# 原始输入用于残差
identity = x
# Haar小波变换
haar_out = self.haar(x)
B, C, H, W = haar_out.shape
# 调整小波特征形状
haar_out = haar_out.view(B, -1, 4, H, W)
haar_out = haar_out.permute(0, 2, 1, 3, 4)
haar_out = haar_out.reshape(B, -1, H, W) # [B, 4*c1, H/2, W/2]
# 残差路径
res_out = self.residual(identity)
# 融合特征(小波特征 + 残差特征)
fused = torch.cat([haar_out, res_out], dim=1) # [B, 5*c1, H/2, W/2]
# 特征融合处理
features = self.feature_fusion(fused) # [B, c2, H/2, W/2]
# 空间注意力
spatial_map = self.spatial_att(features) # [B, 1, H/2, W/2]
# 应用空间注意力
weighted_features = features * spatial_map
# 输出层
return self.output_conv(weighted_features)
class DWTBlock(nn.Module):
"""渐进式小波下采样模块(训练策略优化)"""
def __init__(self, c1, c2, *args, **kwargs):
super().__init__()
self.c1 = c1
self.c2 = c2
# 标准卷积下采样
self.conv_down = nn.Sequential(
nn.Conv2d(c1, c2, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(c2),
nn.SiLU(inplace=True)
)
# 小波下采样模块
self.dwt_block = StableDWTBlock(c1, c2)
# 融合权重(可学习参数)
self.alpha = nn.Parameter(torch.tensor(0.0))
def forward(self, x):
# 标准卷积路径
conv_path = self.conv_down(x)
# 小波路径
dwt_path = self.dwt_block(x)
# 动态融合(训练初期主要使用卷积路径)
return torch.sigmoid(self.alpha) * dwt_path + (1 - torch.sigmoid(self.alpha)) * conv_path
class VGCA(nn.Module):
"""改进版方差引导通道注意力 (带残差连接)"""
def __init__(self, channels, reduction=8):
super().__init__()
self.channels = channels
# 方差路径 - 计算通道方差并生成门控权重
self.var_gate = nn.Sequential(
nn.Linear(channels, channels // reduction),
nn.ReLU(),
nn.Linear(channels // reduction, channels),
nn.Sigmoid()
)
# 空间路径 - 轻量级空间特征增强
self.spatial = nn.Sequential(
nn.Conv2d(channels, channels, 3, padding=1, groups=channels),
nn.BatchNorm2d(channels)
)
# 残差连接后的卷积调整层
self.res_conv = nn.Conv2d(channels, channels, kernel_size=1)
def forward(self, x):
b, c, h, w = x.shape
identity = x # 保存原始输入用于残差连接
# 添加安全检查,避免小尺寸特征图的方差计算问题
if h > 1 and w > 1:
# 计算通道方差
channel_var = x.var(dim=(2, 3), keepdim=True, unbiased=False)
channel_var = torch.log(1 + channel_var) # 数值稳定化
else:
# 当特征图太小无法计算方差时,使用平均值代替
channel_mean = x.mean(dim=(2, 3), keepdim=True)
channel_var = torch.log(1 + channel_mean)
# 生成门控权重
gate = self.var_gate(channel_var.view(b, c)) # [b,c]
gate = gate.view(b, c, 1, 1) # 重塑为[b,c,1,1]
# 空间特征增强
spatial_feat = self.spatial(x)
# 方差指导的特征调制
modulated = gate * spatial_feat
# 残差连接 (添加缩放参数)
res_connection = identity + modulated
# 卷积调整保持维度
output = self.res_conv(res_connection)
return output
def init_param_one(param):
if param is not None:
nn.init.constant_(param, 0.1)
class AMSPP(nn.Module):
def __init__(self, c1, c2, k=5):
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 =GhostConv(c1, c_, 1, 1)
self.cv2 =GhostConv(c_ * 4, c2, 1, 1)
self.cv = GhostConv(c2, c2, 1, 1)
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
self.a = nn.AvgPool2d(kernel_size=k, stride=1, padding=k // 2)
self.act = nn.Sigmoid()
self.A3d = VGCA(channels=c2)
# self.A3d = SEAttention(channel=c2)
self.norm = nn.BatchNorm2d(c2)
self.s = nn.SiLU()
self.alpha = torch.nn.Parameter(torch.Tensor([0.1]))
self.reset_parameters()
def reset_parameters(self):
init_param_one(self.alpha)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.cv1(x)
x1, x2 = torch.split(x, x.size(1) // 2, dim=1)
y1_m = self.m(x1)
y2_m = self.m(y1_m)
y3_m = self.m(y2_m)
y1_a = self.a(x2)
y2_a = self.a(y1_a)
y3_a = self.a(y2_a)
y3_m = y3_m - self.alpha * (y1_m + y2_m)
y3_a = y3_a - self.alpha * (y1_a + y2_a)
z = self.cv2(torch.cat((x1, y1_m, y2_m, y3_m, x2, y1_a, y2_a, y3_a), dim=1))
return self.s(self.norm(self.cv(self.A3d(z))))
# Parameters
nc: 10 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, DWTBlock, [256]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, DWTBlock, [512]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024,3,2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, AMSPP, [1024, 5]] # 9
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
不少于1万字