A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
The left subtree of a node contains only nodes with keys less than or equal to the node’s key.
The right subtree of a node contains only nodes with keys greater than the node’s key.
Both the left and right subtrees must also be binary search trees.
Insert a sequence of numbers into an initially empty binary search tree. Then you are supposed to count the total number of nodes in the lowest 2 levels of the resulting tree.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤1000) which is the size of the input sequence. Then given in the next line are the N integers in [−10001000] which are supposed to be inserted into an initially empty binary search tree.
Output Specification:
For each case, print in one line the numbers of nodes in the lowest 2 levels of the resulting tree in the format:
n1 + n2 = n
where n1 is the number of nodes in the lowest level, n2 is that of the level above, and n is the sum.
递归求出每个节点深度和根的深度,在bfs中计算相应深度的节点个数。
#include<iostream>
#include<queue>
using namespace std;
typedef struct node{
int data, depth = 0;
node* l,* r;
}*tree;
int lowest = 0, above = 0, maxDepth = 0;
void insertT(tree& t, int d) {
if (t == NULL) {
t = new node();
t->data = d;
t->r = t->l = NULL;
return;
}
if (t->data < d)insertT(t->r, d);
else
insertT(t->l, d);
}
void getDepth(tree &t,int depth) {
if (t == NULL) {
return ;
}
maxDepth = (maxDepth > depth) ? maxDepth : depth;
t->depth = depth;
getDepth(t->l, depth + 1);
getDepth(t->r, depth + 1);
}
void level(tree t) {
queue<tree>q;
q.push(t);
while (!q.empty()) {
auto temp = q.front();
q.pop();
if (temp->depth == maxDepth)lowest++;
if (temp->depth == maxDepth-1)above++;
if (temp->l != NULL)q.push(temp->l);
if (temp->r != NULL)q.push(temp->r);
}
}
int main() {
int n;
tree t=NULL;
cin >> n;
for (int i = 0; i < n; i++) {
int d;
cin >> d;
insertT(t, d);
}
getDepth(t,1);
level(t);
cout << lowest << " + " << above << " = " << lowest + above << endl;
return 0;
}
本文介绍了一种算法,用于在构建的二叉搜索树中计算最低两层的节点数量。通过递归插入元素并计算每个节点的深度,然后使用广度优先搜索策略在最低两层中计数节点,最后输出这些节点的数量。
5513

被折叠的 条评论
为什么被折叠?



