poj3169最简单的差分约束问题

本文通过一道具体的题目,介绍了如何使用差分约束系统解决一类关于牛排队的问题。该问题涉及牛之间的距离限制,并要求计算牛1与牛N之间可能的最大距离。文章提供了完整的AC代码实现。

推荐一篇讲差分约束的博客点击打开链接

题目链接 点击打开链接
Layout
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 13315 Accepted: 6393

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). 

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. 

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD. 

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. 

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample: 

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart. 

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

Source


AC代码

#include<iostream>
#include<string.h>
#include<queue>
#include<stdio.h>
#define inf 0x3f3f3f3f
#define maxn 1001
using namespace std;
int n,ml,md;
int a,b,d;
bool check[maxn];
int dis[maxn];
int cnt[maxn];
queue<int> Q;
struct node
{
    int u;//保存每一条边的起始点
    int v;//保存每一条边的终止点
    int w;//保存每一条边的权值
    int next;//保存每一条边的上一条边的编号
}edge[maxn*maxn];//保存每一条边,下标表示每一条边的编号
int head[maxn];//保存每一个顶点的起始边的编号
int num;
void add(int u,int v,int w,int &k)
{
    edge[k].u=u;
    edge[k].v=v;
    edge[k].w=w;
    edge[k].next=head[u];
    head[u]=k++;
}
void init()
{
    memset(head,-1,sizeof(head));
    memset(dis,inf,sizeof(dis));
    memset(check,false,sizeof(check));
    memset(cnt,0,sizeof(cnt));
    num=0;
    while(!Q.empty())
    {
        Q.pop();
    }
}
int spfa()
{
    Q.push(1);
    check[1]=true;
    dis[1]=0;
    cnt[1]++;
    while(!Q.empty())
    {
        int u=Q.front();
        for(int k=head[u];k!=-1;k=edge[k].next)
        {
            int v=edge[k].v;
            int w=edge[k].w;
            if(dis[v]>dis[u]+w)
            {
                dis[v]=dis[u]+w;
                if(!check[v])
                {
                    Q.push(v);
                    cnt[v]++;
                    if(cnt[v]>n)
                    {
                       return -1;
                    }
                    check[v]=true;
                }
            }
        }
        check[u]=false;
        Q.pop();
    }
    return dis[n];
}
int main()
{
    init();
    scanf("%d%d%d",&n,&ml,&md);
    for(int i=1;i<=n-1;i++)
    {
        add(i+1,i,0,num);
    }
    for(int i=1;i<=ml;i++)
    {
        scanf("%d%d%d",&a,&b,&d);
        add(a,b,d,num);
    }
    for(int i=1;i<=md;i++)
    {
        scanf("%d%d%d",&a,&b,&d);
        add(b,a,-d,num);
    }
    int temp=spfa();
    if(temp==inf)
        printf("-2\n");
    else if(temp==-1)
        printf("-1\n");
    else
    printf("%d\n",temp);

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值