快速搭建tensorflow gpu环境

之前看了很多教程,需要去官网安装cuda,cudnn,比较麻烦。

参考tensorflow2.4.1+cuda11.0+cudnn8.0.4安装记录https://www.ngui.cc/article/show-359876.html

只需要conda就能安装cuda,cudnn。

首先需要pycharm+anaconda,直接去官网下载就行,不再叙述。

下面是经过我验证可用的一套环境,我的显卡是3050,需要自己先查询以下版本是否适配于显卡以及显卡驱动。

python 3.7 + cuda 11.3 + cudnn 8.2.1 +tensorflw 2.6.0

之后用conda创建一个python 环境:python 3.7

conda create -n tf2.6 python=3.7

激活环境

conda activate tf2.6

 安装cuda:11.3

conda install cudatoolkit=11.3

安装cudnn:8.2.1

conda install -c nvidia cudnn

 安装tensorflow:2.6.0

pip install tensorflow-gpu==2.6.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

 之后运行实验可能会报错

cannot import name ‘dtensor‘ from ‘tensorflow.compat.v2.experimental‘

看了一下keras版本是2.9.0的,降低keras的版本即可

pip install keras==2.6.0

下面还有一套可用

python 3.6 + cuda 11.0 + cudnn 8.0 +tensorflw 2.4.0

conda create -n tf2.4 python=3.6
conda activate tf2.4
conda install cudatoolkit=11.0
conda install -c conda-forge cudnn=8.0
pip install tensorflow-gpu==2.4.0

这套据我测试虽然可行,但是会出一些问题,我是30系显卡,不知道是不是不兼容的原因。

代码中加入下列代码可以正常运行

from tensorflow._api.v2.compat.v1 import ConfigProto
from tensorflow._api.v2.compat.v1 import InteractiveSession

config = ConfigProto()
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值