1.线性回归:
regress 顾名思义,就是一元多元方程的的拟合,y=c1*x1+c2*x2....或者y=c1*x1^2+c2*x2^2+c3*x1*x2....等等形式
[b,BINT] = regress(Y,X)
[b,BINT,R] = regress(Y,X)
[b,BINT,R,RINT] = regress(Y,X)
[b,BINT,R,RINT,STATS] = regress(Y,X)
[b,BINT,R,RINT,STATS] = regress(Y,X,ALPHA)
b [c1 c2 c3.....]
BINT 回归系数的估计区间 B的95%的置信区间矩阵,Bint 置信区间不大,说明有效性较好;若含零点,说明结果无效。
R 残差(因变量的真实值减去估计值)
RINT 置信区间
STATS:向量,STATS中的4个值分别为:R2(判定系数),F(总模型的F测验值),P(总模型F的概率值P(F>Fz)),MSq(离回归方差或误差方差的估计值)
判定系数(the Coefficient of the Determination)R2:是判断回归模型拟合程度的一个指标,其取值范围为[0, 1];判定系数越大说明回归模型的拟合程度越高,回归方程越显著。
F>F(1-α)(k, n-k-1)时拒绝H0,F越大,说明回归方程越显著。
与F对应的概率P<α时拒绝H0,回归模型成立。
MSq:由于最小二乘法中不求误差方差σ2,其误差平方和Msq定义为SSR/自由度
funcPara=[ones(size(y,2))'