Rethinking the Up-Sampling Operations in Generative Network for Generalizable Deepfake Detection

该研究关注深度伪造检测中上采样操作的重要性,指出上采样在GANs和扩散模型中的广泛应用导致了局部像素间的联系,这些联系即使在高度真实的图像中也能被检测到。通过提出Neighboring Pixel Relationships (NPR)的概念,该研究旨在建立一种域无关的伪造检测方法,提高检测算法的泛化性能。实验结果表明,上采样的伪影对于检测具有更好的泛化性。

一、研究背景
1.GANs和扩散模型的发展滋生了大量高度真实的合成图像,并增大了误用风险。
2.以往的深度伪造检测任务致力于设计新的检测算法,明显缺乏对生成架构的探究。
3.为了提升检测算法的泛化性,以往工作通常优化检测算法、扩充数据集、预训练模型,但是缺乏域不变表征使这些方法依旧难以应用于未知域。
4.当前一些工作主要研究上采样对整个图像在频域的影响,并用频谱表征上采样伪影,但是GAN不同的频域模式限制了频域伪影的泛化性能。

二、研究动机
1.上采样被广泛用于GAN模型和扩散模型,因此,在提升深度伪造检测泛化性上具有巨大潜力。
2.上采样使局部像素之间产生联系,同时,后续CNN的平移不变性使这种联系得以保存。
3.不管生成效果再怎么真实,上采样层的痕迹始终存在于局部的图片像素中。

三、研究目标
通过重新探究生成模型的上采样模块的像素级影响,实现域无关的伪造检测。

四、技术路线
重新思考基于CNN的深度伪造生成器,并构建了伪影的通用表征近邻像素关系Neighboring Pixel Relationships (NPR),提升深度伪造检测的泛化性。
在这里插入图片描述

  1. 引入Neighboring Pixel Relationships (NPR)的概念。
    x^\hat x<
### Features-Fused-Pyramid-Neck 的设计与性能优化分析 Features-Fused-Pyramid-Neck 是一种用于目标检测的特征融合架构,其核心目标是通过改进特征金字塔的设计,解决多尺度目标检测中的特征错位问题。该架构通过重新思考特征融合的方式,提升了检测的精度和效率[^1]。 #### 特征金字塔的设计目标 在目标检测任务中,多尺度目标的检测一直是技术难点之一。传统特征金字塔(如FPN)通过自上而下和横向连接的方式,将高层语义信息和低层空间信息进行融合,以增强多尺度目标的特征表示。然而,这种方法存在特征错位的问题,即不同层级的特征在空间上难以完全对齐,导致融合效果受限。Features-Fused-Pyramid-Neck 通过改进特征融合的设计,优化了这一问题[^1]。 #### 特征融合架构的改进 Features-Fused-Pyramid-Neck 的改进主要体现在以下几个方面: 1. **特征对齐机制**:引入了更精细的特征对齐技术,确保不同层级的特征在空间维度上能够精确对齐。这种对齐机制有效减少了特征错位带来的信息损失,从而提升了多尺度目标的检测精度[^1]。 2. **动态特征融合**:通过动态调整特征融合的权重,根据输入图像的内容自适应地选择最优的特征组合。这种方法不仅提高了模型的灵活性,还增强了其对不同场景的适应能力。 3. **轻量化设计**:为了提升实时性,Features-Fused-Pyramid-Neck 在保证性能的前提下,对网络结构进行了轻量化设计。例如,通过使用深度可分离卷积(Depthwise Separable Convolution)等技术,减少了计算量,从而提高了推理速度。 #### 性能优化 在性能优化方面,Features-Fused-Pyramid-Neck 通过以下方式提升了目标检测的效率和精度: 1. **多尺度特征提取**:通过多层级特征金字塔的设计,能够有效捕捉不同尺度的目标特征,从而提升小目标和大目标的检测性能。 2. **实时性优化**:通过轻量化设计和动态特征融合策略,减少了模型的计算复杂度,使得该架构能够在实时目标检测任务中表现出色。 3. **实验验证**:在多个目标检测数据集上进行了广泛的实验验证,结果表明 Features-Fused-Pyramid-Neck 在检测精度和推理速度方面均优于传统的特征金字塔架构。 #### 代码示例 以下是一个简化的 Features-Fused-Pyramid-Neck 的实现示例,展示了其核心特征融合模块的设计: ```python import torch import torch.nn as nn class FeatureFusedPyramidNeck(nn.Module): def __init__(self, in_channels_list, out_channels): super(FeatureFusedPyramidNeck, self).__init__() self.lateral_convs = nn.ModuleList() self.top_down_convs = nn.ModuleList() self.out_convs = nn.ModuleList() # 构建横向连接和自上而下连接 for in_channels in in_channels_list: lateral_conv = nn.Conv2d(in_channels, out_channels, 1) top_down_conv = nn.Conv2d(out_channels, out_channels, 3, padding=1) self.lateral_convs.append(lateral_conv) self.top_down_convs.append(top_down_conv) # 输出层卷积 for _ in range(len(in_channels_list)): out_conv = nn.Conv2d(out_channels, out_channels, 3, padding=1) self.out_convs.append(out_conv) def forward(self, inputs): # 横向连接 laterals = [lateral_conv(x) for x, lateral_conv in zip(inputs, self.lateral_convs)] # 自上而下传播 feature_maps = [] feature_map = laterals[-1] feature_maps.append(feature_map) for i in range(len(laterals) - 2, -1, -1): feature_map = torch.nn.functional.interpolate(feature_map, scale_factor=2, mode='nearest') feature_map = feature_map + laterals[i] feature_maps.append(feature_map) # 输出层处理 outputs = [out_conv(fm) for fm, out_conv in zip(feature_maps, self.out_convs)] return outputs ``` ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二苏旧局吖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值