自从去年Meta发布了首个开源Llama3.2Llama 3.2-11B-vision多模态大模型,然而,市面上几乎没有blog研究其结构的具体构造,让人对其原理和结构都会产生不同程度的困惑,不利于对大模型的学习,本系列blog将从头开始一步一步详细地讲解这个多模态大模型,而不会对某个步骤含糊其辞。本blog教程十分适合对大模型的小白。本系列的目录为:
- 图片预处理的详细步骤(链接: 飞机票)
- 文本预处理的详细步骤(即本文blog)
- 视觉编码器的详细结构和步骤(敬请期待……)
- 文本编码器的详细结构和步骤(敬请期待……)
- 文本交融的详细结构和步骤(敬请期待……)
- 输出的详细结构和步骤(敬请期待……)
- Llama 3.2-11B-vision多模态大模型推理完整超清流程图(本系列blog彩蛋^_^敬请期待……)
Llama 3.2-11B-vision文本预处理的详细步骤
0. Llama 3.2-11B-vision多模态大模型推理代码
下方为官方提供的完整推理代码,我选取了一个灰度图片,即MNIST数据集中的一张28X28的图片,上面切了一部分,为28X24的大小图片。该图用PIL读入后,实际为28*24的一个矩阵,矩阵中的每个值均为无符号的8位整数,范围在0~255之间,随后传入了processor函数,即本文将要详细和重点介绍的一个算法。其余均为文本预处理部分将在下期详细讲解。
# This is a sample Python script.
# Press Shift+F10 to execute it or replace it with your code.
# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.
#%%
import requests
import torch
from PIL import Image
from transformers import MllamaForConditionalGeneration, AutoProcessor
from time import time
import numpy as np
import pandas as pd
model_dir = "./models/llama3.2_11b"
model = MllamaForConditionalGeneration.from_pretrained(
model_dir,
torch_dtype=torch.bfloat16,
device_map="cuda:0",
)
model.tie_weights()
# 这里是初始化的过程,会识别分词器以及image分片的类型
processor = AutoProcessor.from_pretrained(model_dir)
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
url = "https://www.modelscope.cn/models/LLM-Research/Llama-3.2-11B-Vision/resolve/master/rabbit.jpg"
while 1:
# image = Image.open("./data/1995.jpg") # 图片路径
image = Image.open("./data/000000.png")
# image = Image.open("./data/bicycle_bigger.png")
image_array = np.array(image) # 这个没什么用,每个数值在0~255之间,8位无符号整数
query = "图中的数字是几?"
# query = "图中的交通工具是什么?"
# query = "图中的人在干嘛?"
messages = [
{"role": "user", "content": [
{"type": "image"},
{"type": "text", "text": query} # 填入问题
]}
]
s1 = time()
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
# 上面就是套一个text模版,可以本地执行
# 这里应该是call的过程,就是调用的过程
inputs = processor(image, input_text, return_tensors="pt").to(model.device)
for k in inputs.data: # 保存输出值下来!
save_tensor_to_txt(inputs.data[k], f'./data/tensor_output_0{k}.txt')
print(processor.decode(inputs["input_ids"][0]))
# 上面这个融合是比较麻烦的地方
output = model.generate(**inputs, max_new_tokens=1000)
print(time() - s1)
print(processor.decode(output[0]))
# See PyCharm help at https://www.jetbrains.com/help/pycharm/
1. 文本预处理代码概览
下方的代码是文本预处理的核心部分,也是本文的讲解重点。
class MllamaProcessor(ProcessorMixin):
r"""
Constructs a Mllama processor which wraps [`MllamaImageProcessor`] and
[`PretrainedTokenizerFast`] into a single processor that inherits both the image processor and
tokenizer functionalities. See the [`~MllamaProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more
information.
The preferred way of passing kwargs is as a dictionary per modality, see usage example below.
```python
from transformers import MllamaProcessor
from PIL import Image
processor = MllamaProcessor.from_pretrained("meta-llama/Llama-3.2-11B-Vision")
processor(
images=your_pil_image,
text=["<|image|>If I had to write a haiku for this one"],
images_kwargs = {"size": {"height": 448, "width": 448}},
text_kwargs = {"padding": "right"},
common_kwargs = {"return_tensors": "pt"},
)
```
Args:
image_processor ([`MllamaImageProcessor`]):
The image processor is a required input.
tokenizer ([`PreTrainedTokenizer`, `PreTrainedTokenizerFast`]):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "MllamaImageProcessor"
tokenizer_class = "PreTrainedTokenizerFast"
def __init__(self, image_processor, tokenizer):
if not hasattr(tokenizer, "image_token"):
self.image_token = "<|image|>"
self.image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
else:
self.image_token = tokenizer.image_token
self.image_token_id = tokenizer.image_token_id
self.python_token = "<|python_tag|>"
self.python_token_id = tokenizer.convert_tokens_to_ids(self.python_token)
self.bos_token = tokenizer.bos_token
self.chat_template = tokenizer.chat_template
super().__init__(image_processor, tokenizer)
def __call__(
self,
images: Optional[ImageInput] = None,
text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
audio=None,
videos=None,
**kwargs: Unpack[MllamaProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare text(s) and image(s) to be fed as input to the model. This method forwards the `text`
arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` arguments to
MllamaImageProcessor's [`~MllamaImageProcessor.__call__`] if `images` is not `None`. Please refer
to the docstring of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
TODO: add aspect_ratio_ids and aspect_ratio_mask and cross_attention_mask
"""
# 如果文本和图片都不存在,则验证不通过!!
if text is None and images is None:
raise ValueError("You must specify either text or images.")
# 就说明了返回的结果要是tensor类型
output_kwargs = self._merge_kwargs(
MllamaProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
text_kwargs = output_kwargs["text_kwargs"]
images_kwargs = output_kwargs["images_kwargs"]
common_kwargs = output_kwargs["common_kwargs"]
data = {}
# 0. 首先要对输入的字符串进行验证,确保都是字符串类型str
if text is not None:
if isinstance(text, str):
text = [text] # 其实只有一句话
elif not (isinstance(text, (list, tuple)) and all(isinstance(t, str) for t in text)):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
# n_images_in_text 和图像 token 的匹配: 计算每个文本项中包含的图像 token 数量,并验证图像和文本的配对是否正确。
# 特别是,当文本中包含图像 token 时,必须确保每个文本项都有相应数量的图像。
n_images_in_text = [t.count(self.image_token) for t in text]
text = [build_string_from_input(text_item, self.bos_token, self.image_token) for text_item in text]
_ = text_kwargs.pop("padding_side", None) # hack until padding-side is an accepted kwarg by tokenizers
# 1. PreTrainedTokenizerFast 的分词器,它能够处理字符串并返回 token ids
encoding = self.tokenizer(text, **text_kwargs)
# encoding中的两个元素(分词结果input_ids和attention_mask)长度一样:
# 注意这里第六个id为128256=<image>
# {'input_ids': tensor([[128000, 128000, 128006, 882, 128007, 271, 128256, 29129, 105363,
# 83687, 21043, 104194, 11571, 128009, 128006, 78191, 128007, 271]]),
# 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}
data.update(encoding)
n_images_in_images = [0]
if images is not None:
images = make_list_of_images(images) # 1*1
n_images_in_images = [len(sample) for sample in images] # [1]:只有第一个样本有一个图
if text is not None:
if any(batch_img == 0 for batch_img in n_images_in_text) and not all(
batch_img == 0 for batch_img in n_images_in_text
):
raise ValueError(
"If a batch of text is provided, there should be either no images or at least one image per sample"
)
if sum(n_images_in_images) != sum(n_images_in_text):
if images is None:
raise ValueError("No image were provided, but there are image tokens in the prompt")
else:
raise ValueError(
f"The number of image token ({sum(n_images_in_text)}) should be the same as in the number of provided images ({sum(n_images_in_images)})"
)
if images is not None:
# image_processor 会处理图像并将特征添加到最终的输出中。
# self.image_processor:即为图像预处理的分析过程!(已分析)
image_features = self.image_processor(images, **images_kwargs)
num_tiles = image_features.pop("num_tiles")
data.update(image_features)
# Create cross attention mask
if images is not None and text is not None:
cross_attention_token_mask = [
get_cross_attention_token_mask(token_ids, self.image_token_id) for token_ids in encoding["input_ids"]
] # 各个token_id与<|image|>进行交互
# 2. cross_attention_mask维度是(1,18,1,4),
# 1:表示该批只有1个样本
# length=18表明所有样本最长为18个 token 参与计算
# 1:每个样本中包含一个图像。
# max_num_tiles=4,每个图像被切分成了4个块,用来进行跨注意力计算。表明需要有4个维度(数组的列数),即[[1,0,0,0]]: (1*4)
#
cross_attention_mask = convert_sparse_cross_attention_mask_to_dense(
cross_attention_token_mask, # 揭示cross_attention_mask的范围:[[[6, -1]]],即从第六个token开始到最后一个token
num_tiles=num_tiles, # [[1]]
max_num_tiles=self.image_processor.max_image_tiles, # 4
length=max(len(input_ids) for input_ids in encoding["input_ids"]), # 18
)
data["cross_attention_mask"] = cross_attention_mask
return_tensors = common_kwargs.pop("return_tensors", None)
batch_feature = BatchFeature(data=data, tensor_type=return_tensors)
return batch_feature # 至此,文本预处理结束!!!主要得到了所有tokens的id和掩码
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def post_process_image_text_to_text(self, generated_outputs):
"""
Post-process the output of the model to decode the text.
Args:
generated_outputs (`torch.Tensor` or `np.ndarray`):
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
or `(sequence_length,)`.
Returns:
`List[str]`: The decoded text.
"""
return self.tokenizer.batch_decode(
generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(tokenizer_input_names + image_processor_input_names + ["cross_attention_mask"])
2. MllamaProcessor类
下方是这个类的起始部分,会包含各种需要输入的参数,此部分源码均又对各个参数进行细致的讲解,可使用文心一言等大模型详细获取具体各个参数的作用。此外,初始化部分主要也是对输入的参数进行验证,以免不同的参数之间发生冲突。
class MllamaProcessor(ProcessorMixin):
r"""
Constructs a Mllama processor which wraps [`MllamaImageProcessor`] and
[`PretrainedTokenizerFast`] into a single processor that inherits both the image processor and
tokenizer functionalities. See the [`~MllamaProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more
information.
The preferred way of passing kwargs is as a dictionary per modality, see usage example below.
```python
from transformers import MllamaProcessor
from PIL import Image
processor = MllamaProcessor.from_pretrained("meta-llama/Llama-3.2-11B-Vision")
processor(
images=your_pil_image,
text=["<|image|>If I had to write a haiku for this one"],
images_kwargs = {"size": {"height": 448, "width": 448}},
text_kwargs = {"padding": "right"},
common_kwargs = {"return_tensors": "pt"},
)
```
Args:
image_processor ([`MllamaImageProcessor`]):
The image processor is a required input.
tokenizer ([`PreTrainedTokenizer`, `PreTrainedTokenizerFast`]):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "MllamaImageProcessor"
tokenizer_class = "PreTrainedTokenizerFast"
def __init__(self, image_processor, tokenizer):
if not hasattr(tokenizer, "image_token"):
self.image_token = "<|image|>"
self.image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
else:
self.image_token = tokenizer.image_token
self.image_token_id = tokenizer.image_token_id
self.python_token = "<|python_tag|>"
self.python_token_id = tokenizer.convert_tokens_to_ids(self.python_token)
self.bos_token = tokenizer.bos_token
self.chat_template = tokenizer.chat_template
super().__init__(image_processor, tokenizer)
def __call__(
self,
images: Optional[ImageInput] = None,
text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
audio=None,
videos=None,
**kwargs: Unpack[MllamaProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare text(s) and image(s) to be fed as input to the model. This method forwards the `text`
arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` arguments to
MllamaImageProcessor's [`~MllamaImageProcessor.__call__`] if `images` is not `None`. Please refer
to the docstring of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
TODO: add aspect_ratio_ids and aspect_ratio_mask and cross_attention_mask
"""
3. 图文验证
验证图文以及格式是否正确。
# 如果文本和图片都不存在,则验证不通过!!
if text is None and images is None:
raise ValueError("You must specify either text or images.")
# 就说明了返回的结果要是tensor类型
output_kwargs = self._merge_kwargs(
MllamaProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
text_kwargs = output_kwargs["text_kwargs"]
images_kwargs = output_kwargs["images_kwargs"]
common_kwargs = output_kwargs["common_kwargs"]
4. 验证字符串,然后分词
- 首先要对输入的字符串进行验证,确保都是字符串类型str,然后分词,更新到data字典中
if text is not None:
if isinstance(text, str):
text = [text] # 其实只有一句话
elif not (isinstance(text, (list, tuple)) and all(isinstance(t, str) for t in text)):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
# n_images_in_text 和图像 token 的匹配: 计算每个文本项中包含的图像 token 数量,并验证图像和文本的配对是否正确。
# 特别是,当文本中包含图像 token 时,必须确保每个文本项都有相应数量的图像。
n_images_in_text = [t.count(self.image_token) for t in text]
text = [build_string_from_input(text_item, self.bos_token, self.image_token) for text_item in text]
_ = text_kwargs.pop("padding_side", None) # hack until padding-side is an accepted kwarg by tokenizers
# 1. PreTrainedTokenizerFast 的分词器,它能够处理字符串并返回 token ids
encoding = self.tokenizer(text, **text_kwargs)
# encoding中的两个元素(分词结果input_ids和attention_mask)长度一样:
# 注意这里第六个id为128256=<image>
# {'input_ids': tensor([[128000, 128000, 128006, 882, 128007, 271, 128256, 29129, 105363,
# 83687, 21043, 104194, 11571, 128009, 128006, 78191, 128007, 271]]),
# 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}
data.update(encoding)
5. 图片数量核对
核对<image>标识和图片数量是否一致
n_images_in_images = [0]
if images is not None:
images = make_list_of_images(images) # 1*1
n_images_in_images = [len(sample) for sample in images] # [1]:只有第一个样本有一个图
if text is not None:
if any(batch_img == 0 for batch_img in n_images_in_text) and not all(
batch_img == 0 for batch_img in n_images_in_text
):
raise ValueError(
"If a batch of text is provided, there should be either no images or at least one image per sample"
)
if sum(n_images_in_images) != sum(n_images_in_text):
if images is None:
raise ValueError("No image were provided, but there are image tokens in the prompt")
else:
raise ValueError(
f"The number of image token ({sum(n_images_in_text)}) should be the same as in the number of provided images ({sum(n_images_in_images)})"
)
6. 图片预处理过程(见上期blog)
回顾上期,此处生成了图片的三个特征。
if images is not None:
# image_processor 会处理图像并将特征添加到最终的输出中。
# self.image_processor:即为图像预处理的分析过程!(已分析)
image_features = self.image_processor(images, **images_kwargs)
num_tiles = image_features.pop("num_tiles")
data.update(image_features)
7. 生成cross_attention_token_mask
生成交叉注意力机制的mask,目的是为了后面的图文交融做准备!
# Create cross attention mask
if images is not None and text is not None:
cross_attention_token_mask = [
get_cross_attention_token_mask(token_ids, self.image_token_id) for token_ids in encoding["input_ids"]
] # 各个token_id与<|image|>进行交互
# 2. cross_attention_mask维度是(1,18,1,4),
# 1:表示该批只有1个样本
# length=18表明所有样本最长为18个 token 参与计算
# 1:每个样本中包含一个图像。
# max_num_tiles=4,每个图像被切分成了4个块,用来进行跨注意力计算。表明需要有4个维度(数组的列数),即[[1,0,0,0]]: (1*4)
#
cross_attention_mask = convert_sparse_cross_attention_mask_to_dense(
cross_attention_token_mask, # 揭示cross_attention_mask的范围:[[[6, -1]]],即从第六个token开始到最后一个token
num_tiles=num_tiles, # [[1]]
max_num_tiles=self.image_processor.max_image_tiles, # 4
length=max(len(input_ids) for input_ids in encoding["input_ids"]), # 18
)
data["cross_attention_mask"] = cross_attention_mask
return_tensors = common_kwargs.pop("return_tensors", None)
batch_feature = BatchFeature(data=data, tensor_type=return_tensors)
return batch_feature # 至此,文本预处理结束!!!主要得到了所有tokens的id和掩码
14. processing_mllama.py的完整源代码
下方是官方提供的完整版的原始版本的代码
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Processor class for Mllama."""
from typing import List, Optional, Union # 导入必要的类型提示库
import numpy as np # 导入numpy库用于数值计算
from ...feature_extraction_utils import BatchFeature # 导入BatchFeature类,用于处理批量数据
from ...image_utils import ImageInput # 导入ImageInput类,用于表示图像输入
from ...processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, Unpack # 导入处理过程中的辅助工具类
from ...tokenization_utils_base import (
PreTokenizedInput, # 导入已标记输入类型
TextInput, # 导入文本输入类型
)
# TODO: Can we do it that way or its better include as "Copied from ..."
from .image_processing_mllama import make_list_of_images # 导入自定义函数make_list_of_images,用于图像处理
# 定义MllamaImagesKwargs类,继承自ImagesKwargs,表示处理图像的额外参数
class MllamaImagesKwargs(ImagesKwargs, total=False):
max_image_tiles: Optional[int] # 可选参数:图像的最大切片数
# 定义MllamaProcessorKwargs类,继承自ProcessingKwargs,表示处理的附加参数
class MllamaProcessorKwargs(ProcessingKwargs, total=False):
images_kwargs: MllamaImagesKwargs # 包含图像处理的参数
_defaults = { # 定义默认的图像处理参数
"image_kwargs": {
"max_image_tiles": 4, # 默认最大图像切片数为4
},
}
def get_cross_attention_token_mask(input_ids: List[int], image_token_id: int) -> List[List[int]]:
"""
Generate a cross-attention token mask for image tokens in the input sequence.
Args:
input_ids (List[int]): A list of token ids representing the input sequence.
image_token_id (int): The id of the token used to represent images in the sequence.
Returns:
List[List[int]]: A list of [start, end] pairs, where each pair represents the range
of tokens an image token should attend to.
"""
# 找到输入中所有图像token的位置
image_token_locations = [i for i, token in enumerate(input_ids) if token == image_token_id]
if len(image_token_locations) == 0: # 如果没有图像token
return []
# 只有一个图像token,设置其关注到序列的末尾
if len(image_token_locations) == 1:
return [[image_token_locations[0], -1]]
# 处理多个图像token,每个图像token关注到下一个图像token或者序列的末尾
vision_masks = [[loc1, loc2] for loc1, loc2 in zip(image_token_locations[:-1], image_token_locations[1:])]
# 最后的图像token关注到所有后续的文本token
vision_masks.append([image_token_locations[-1], len(input_ids)])
# 如果有连续的图像token,它们应该一起关注所有后续的文本
last_mask_end = vision_masks[-1][1]
for vision_mask in vision_masks[::-1]:
if vision_mask[0] == vision_mask[1] - 1:
vision_mask[1] = last_mask_end
last_mask_end = vision_mask[1]
return vision_masks
def convert_sparse_cross_attention_mask_to_dense(
cross_attention_token_mask: List[List[List[int]]],
num_tiles: List[List[int]],
max_num_tiles: int,
length: int,
) -> np.ndarray:
"""
Convert the cross attention mask indices to a cross attention mask 4D array.
Args:
cross_attention_token_mask (List[List[List[int]]]): A nested list structure where:
- The outer list represents the batch dimension.
- The middle list represents different images within each batch item.
- The inner list contains pairs of integers [start, end] representing token ranges for each image.
num_tiles (List[List[int]]): A nested list structure specifying the number of tiles for each image in each batch item.
max_num_tiles (int): The maximum possible number of tiles.
length (int): The total sequence length of the input.
Returns:
np.ndarray: A 4D numpy array of shape (batch_size, length, max_num_images, max_num_tiles)
The array contains `1` where attention is allowed and `0` where it is not.
"""
batch_size = len(cross_attention_token_mask) # 获取批次大小
max_num_images = max([len(masks) for masks in cross_attention_token_mask]) # 获取最大图像数
cross_attention_mask = np.zeros(
shape=(batch_size, length, max_num_images, max_num_tiles), # 初始化cross_attention_mask数组,填充为0
dtype=np.int64, # 使用64位整数类型
)
# 遍历每个样本和它的遮罩,将相应位置填充为1
for sample_idx, (sample_masks, sample_num_tiles) in enumerate(zip(cross_attention_token_mask, num_tiles)):
for mask_idx, (locations, mask_num_tiles) in enumerate(zip(sample_masks, sample_num_tiles)):
if len(locations) == 2:
start, end = locations
end = min(end, length) # 限制结束位置不超过序列长度
if end == -1: # 如果end为-1,表示关注到序列末尾
end = length
cross_attention_mask[sample_idx, start:end, mask_idx, :mask_num_tiles] = 1 # 填充mask
return cross_attention_mask # 返回填充好的4D交叉注意力mask
def build_string_from_input(prompt: str, bos_token: str, image_token: str) -> str:
"""
Builds a string from the input prompt by adding `bos_token` if not already present.
Args:
prompt (`str`): The input prompt string.
bos_token (`str`): The beginning of sentence token to be added.
image_token (`str`): The image token used to identify the start of an image sequence.
Returns:
str: The modified prompt string with the `bos_token` added if necessary.
"""
if bos_token in prompt: # 如果已经有了bos_token,直接返回
return prompt
num_image_tokens_on_start = 0
while prompt.startswith(image_token): # 统计前缀中图像token的个数
prompt = prompt[len(image_token) :]
num_image_tokens_on_start += 1
return f"{image_token * num_image_tokens_on_start}{bos_token}{prompt}" # 在图像token后添加bos_token
class MllamaProcessor(ProcessorMixin):
r"""
Constructs a Mllama processor which wraps [`MllamaImageProcessor`] and
[`PretrainedTokenizerFast`] into a single processor that inherits both the image processor and
tokenizer functionalities. See the [`~MllamaProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more
information.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "MllamaImageProcessor"
tokenizer_class = "PreTrainedTokenizerFast"
def __init__(self, image_processor, tokenizer):
# 初始化,确保tokenizer拥有图像相关的token信息
if not hasattr(tokenizer, "image_token"):
self.image_token = "<|image|>"
self.image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
else:
self.image_token = tokenizer.image_token
self.image_token_id = tokenizer.image_token_id
self.python_token = "<|python_tag|>"
self.python_token_id = tokenizer.convert_tokens_to_ids(self.python_token)
self.bos_token = tokenizer.bos_token
self.chat_template = tokenizer.chat_template
super().__init__(image_processor, tokenizer) # 调用父类构造函数
def __call__(
self,
images: Optional[ImageInput] = None,
text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
audio=None,
videos=None,
**kwargs: Unpack[MllamaProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare text(s) and image(s) to be fed as input to the model. This method forwards the `text`
arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` arguments to
MllamaImageProcessor's [`~MllamaImageProcessor.__call__`] if `images` is not `None`. Please refer
to the docstring of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
TODO: add aspect_ratio_ids and aspect_ratio_mask and cross_attention_mask
"""
# 如果文本和图片都不存在,则验证不通过!!
if text is None and images is None:
raise ValueError("You must specify either text or images.")
# 就说明了返回的结果要是tensor类型
output_kwargs = self._merge_kwargs(
MllamaProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
text_kwargs = output_kwargs["text_kwargs"]
images_kwargs = output_kwargs["images_kwargs"]
common_kwargs = output_kwargs["common_kwargs"]
data = {}
# 0. 首先要对输入的字符串进行验证,确保都是字符串类型str
if text is not None:
if isinstance(text, str):
text = [text] # 其实只有一句话
elif not (isinstance(text, (list, tuple)) and all(isinstance(t, str) for t in text)):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
# n_images_in_text 和图像 token 的匹配: 计算每个文本项中包含的图像 token 数量,并验证图像和文本的配对是否正确。
# 特别是,当文本中包含图像 token 时,必须确保每个文本项都有相应数量的图像。
n_images_in_text = [t.count(self.image_token) for t in text]
text = [build_string_from_input(text_item, self.bos_token, self.image_token) for text_item in text]
_ = text_kwargs.pop("padding_side", None) # hack until padding-side is an accepted kwarg by tokenizers
# 1. PreTrainedTokenizerFast 的分词器,它能够处理字符串并返回 token ids
encoding = self.tokenizer(text, **text_kwargs)
# encoding中的两个元素(分词结果input_ids和attention_mask)长度一样:
# 注意这里第六个id为128256=<image>
# {'input_ids': tensor([[128000, 128000, 128006, 882, 128007, 271, 128256, 29129, 105363,
# 83687, 21043, 104194, 11571, 128009, 128006, 78191, 128007, 271]]),
# 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}
data.update(encoding)
n_images_in_images = [0]
if images is not None:
images = make_list_of_images(images) # 1*1
n_images_in_images = [len(sample) for sample in images] # [1]:只有第一个样本有一个图
if text is not None:
if any(batch_img == 0 for batch_img in n_images_in_text) and not all(
batch_img == 0 for batch_img in n_images_in_text
):
raise ValueError(
"If a batch of text is provided, there should be either no images or at least one image per sample"
)
if sum(n_images_in_images) != sum(n_images_in_text):
if images is None:
raise ValueError("No image were provided, but there are image tokens in the prompt")
else:
raise ValueError(
f"The number of image token ({sum(n_images_in_text)}) should be the same as in the number of provided images ({sum(n_images_in_images)})"
)
if images is not None:
# image_processor 会处理图像并将特征添加到最终的输出中。
# self.image_processor:即为图像预处理的分析过程!(已分析)
image_features = self.image_processor(images, **images_kwargs)
num_tiles = image_features.pop("num_tiles")
data.update(image_features)
# Create cross attention mask
if images is not None and text is not None:
cross_attention_token_mask = [
get_cross_attention_token_mask(token_ids, self.image_token_id) for token_ids in encoding["input_ids"]
] # 各个token_id与<|image|>进行交互
# 2. cross_attention_mask维度是(1,18,1,4),
# 1:表示该批只有1个样本
# length=18表明所有样本最长为18个 token 参与计算
# 1:每个样本中包含一个图像。
# max_num_tiles=4,每个图像被切分成了4个块,用来进行跨注意力计算。表明需要有4个维度(数组的列数),即[[1,0,0,0]]: (1*4)
#
cross_attention_mask = convert_sparse_cross_attention_mask_to_dense(
cross_attention_token_mask, # 揭示cross_attention_mask的范围:[[[6, -1]]],即从第六个token开始到最后一个token
num_tiles=num_tiles, # [[1]]
max_num_tiles=self.image_processor.max_image_tiles, # 4
length=max(len(input_ids) for input_ids in encoding["input_ids"]), # 18
)
data["cross_attention_mask"] = cross_attention_mask
return_tensors = common_kwargs.pop("return_tensors", None)
batch_feature = BatchFeature(data=data, tensor_type=return_tensors)
return batch_feature # 至此,文本预处理结束!!!主要得到了所有tokens的id和掩码
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def post_process_image_text_to_text(self, generated_outputs):
"""
Post-process the output of the model to decode the text.
Args:
generated_outputs (`torch.Tensor` or `np.ndarray`):
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
or `(sequence_length,)`.
Returns:
`List[str]`: The decoded text.
"""
return self.tokenizer.batch_decode(
generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(tokenizer_input_names + image_processor_input_names + ["cross_attention_mask"])