如果 reduce = False,那么 size_average 参数失效,直接返回向量形式的 loss
如果 reduce = True,那么 loss 返回的是标量。如果size_average为True,则除以参与计算loss的元素个数N,即取平均值;如果size_average为False,则为loss的总和,不除以N。
reduce和size_average的默认值为True
目前建议使用reduction参数,reduction的值可为mean,sum,none。默认值为mean。
import torch
import numpy as np
# loss_fn = torch.nn.MSELoss(reduce=False, size_average=False) #直接返回向量形式的 loss
# loss_fn = torch.nn.MSELoss(reduce=False, size_average=True) #直接返回向量形式的 loss
# loss_fn = torch.nn.MSELoss(reduce=True, size_average=False) #取向量总和 sum
# loss_fn = torch.nn.MSELoss(reduce=True, size_average=True) #取平均 mean
# loss_fn = torch.nn.MSELoss() #取平均 mean
# loss_fn = torch.nn.MSELoss(reduce=False) # 直接返回向量形式的 loss
# loss_fn = torch.nn.MSELoss(reduction= 'mean') #取平均 mean
# loss_fn = torch.nn.MSELoss(reduction= 'sum') #取向量总和 sum
loss_fn = torch.nn.MSELoss(reduction= 'none') #直接返回向量形式的 loss
a = np.array([[1, 2], [3, 4]])
b = np.array([[2, 3], [4, 5]])
input = torch.autograd.Variable(torch.from_numpy(a))
target = torch.autograd.Variable(torch.from_numpy(b))
print(input, target)
loss = loss_fn(input.float(), target.float())
print(loss)