数据仓库与知识发现(一)初识

本文介绍了《数据仓库与知识发现》课程的内容,探讨了数据和知识的关系,并提出了知识层次结构。文章阐述了数据仓库和数据挖掘的概念,指出数据挖掘在数据分析、决策支持和智能查询等方面的应用。此外,还讲解了数据挖掘过程的步骤,包括数据选择、预处理、模式寻找等,并提及了数据挖掘在不同类型数据上的应用和主要功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这学期学院开设了《数据仓库与知识发现》这门专业课,作为课程笔记复习巩固之用,将上课所学记录在博客中,同时也希望得到不足之处与指正,作为交流学习。

 

《数据仓库与知识发现》这个标题里提到“数据”“知识”两个概念,那什么是数据?什么是知识?

data 数据 :我们可以轻易得到很多数据,但这些数据对我们来说是没有意义的。

knowledge 知识 :从数据得出有意义的东西,或者说对你来说有用的东西。

同时这里提到了一个知识层次结构(The Knowledge Hierarchy):从低级到高级依次是data(数据)、information(信息)、knowledge(知识)、wisdom(智慧)。由此可以很容易看出从低到高,数据在变得有意义、有价值,直到成为智慧。

 

但我们面临一个问题就是:我们淹没在数据中,却渴求知识。由此,针对这个问题的解决方案就是所谓的数据仓库和数据挖掘。

data warehousing 数据仓库

<

* Covers over 25 new topics, as well as most updated information on topics presented in first edition Includes over 30 new world wide contributors, who are experts in this field New case studies introduced based on real world examples * Knowledge Discovery demonstrates intelligent computing at its best, and is the most desirable and interesting end-product of Information Technology. To be able to discover and to extract knowledge from data is a task that many researchers and practitioners are endeavoring to accomplish. There is a lot of hidden knowledge waiting to be discovered – this is the challenge created by today’s abundance of data. Data Mining and Knowledge Discovery Handbook, 2nd Edition organizes the most current concepts, theories, standards, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This handbook first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook, 2nd Edition is designed for research scientists, libraries and advanced-level students in computer science and engineering as a reference. This handbook is also suitable for professionals in industry, for computing applications, information systems management, and strategic research management. Content Level » Research Keywords » Bayesian networks - KDD - algorithm - data mining - data mining applications - decision trees - ensemble method - knowledge discovery - large datasets - preprocessing method - soft computing method - statistical method - text mining - web mining
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值