1.前一阶段的问题
大概接触了一段时间的silvaco,根据《InP基PIN开关二极管结构设计与制备》这篇文章提供的结构和一些简单的参数进行仿真。因为已经工作,没有老师在自己摸索,学习期间看到很多人写的心得或理解,或多或少都对我有所帮助。但是Z希望我能够把重点放在效应(我猜他指的是model和material的参数)对仿真结果的影响。这一部分的资料很少看到,所以我也来写下我的学习过程。也希望能够有遇上同样问题的人一起讨论。
先简单记录一下我在用这篇文章的结构仿真遇到的问题:
1、 最开始是用devedit画PIN管的结构,但是最后仿真的I-V曲线似乎与atlas通过语句(mesh、region、electron、doping)直接定义的结构仿真的I-V曲线不同。这点有待验证,可能是自己粗心少了参数。
2、 这一个重掺杂的InP基,InGaAs同质结的PIN二极管,如果不去修改x.composition(同理y.composition)、NC300、NV300(或者其他我还没发现的参数),这个结构的能带一开始就会是简并半导体的能带。但是silvaco自带的example里很少有修改NC300和NV300,如果有修改的话通常会把这两个值设置成一样;而参考altas_user_manual里6.4节计算出的NC300和NV300也同样与example里写的参数不同(计算的参数更大)。
3、 仿真出来的曲线,什么样的参数会对曲线的某个点、某段范围产生什么样的影响,要保证仿真的曲线符合物理。
2.mobility models
依然还是从最简单的diode(example里的diodeex03.in的结构)开始理解model中的Mobility models。具体model的介绍在manual的3.6.1节。Manual提到迁移率模型可以大致分成四种:低电场行为(low filed behavior),高电场行为(high filed behavior),体半导体区(bulk semiconductor regions),反型层(inversion layers)。
The low electric field behavior has carriers almost in equilibrium with the lattice and the mobility has a characteristic low-field value that is commonly denoted by the symbol μn0,μp0. The value of this mobility is dependent upon phonon and impurity scattering. Both of which act to decrease the low-field mobility.
The high electric field behavior shows that the carrier mobility declines with electric field because the carriers that gain energy can take part in a wider range of scattering processes. The mean drift velocity no longer increases linearly with increasing electric field, but rises more slowly. Eventually, the velocity doesn’t increase any more with increasing field but saturates at a constant velocity. This constant velocity is commonly denoted by the symbol Vsat. Impurity scattering is relatively insignificant for energetic carriers, and so Vsat is primarily a function of the lattice temperature.
Modeling mobility in bulk material involves: (i) characterizing μn0 and μp0 as a function of doping and lattice temperature, (ii) characterizing Vsat as a function of lattice temperat