Caffe_LossLayers

本文深入探讨了多种深度学习中常用的损失函数,包括Multinomial Logistic Loss、InfoGain Loss、Softmax with Loss、Sum-of-Squares/Euclidean Loss、Hinge/Margin Loss、Sigmoid Cross-Entropy Loss以及Contrastive Loss等,解析了它们的概念、计算方式及应用场景。

1. Multinomial Logistic Loss
2. Infogain Loss - a generalization of MultinomialLogisticLossLayer.
3. Softmax with Loss - computes the multinomial logistic loss of the softmax of its inputs. It’s conceptually identical to a softmax layer followed by a multinomial logistic loss layer, but provides a more numerically stable gradient.


4. Sum-of-Squares / Euclidean - computes the sum of squares of differences of its two inputs, 12N∑Ni=1∥x1i-x2i∥22.
5. Hinge / Margin - The hinge loss layer computes a one-vsall hinge (L1) or squared hinge loss (L2).
6. Sigmoid Cross-Entropy Loss - computes the cross-entropy (logistic) loss, often used for predicting targets interpreted as probabilities.


7. Accuracy / Top-k layer - scores the output as an accuracy with respect to target – it is not actually a loss and has no backward step.
8. Contrastive Loss

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值