第一次学习pytorch 看完了几个视频 稍微记录一下 免完全忘记
学习了PyTorch的安装和配置
Dataset类
TensorBoard可视化的使用
常见的transforms
DataLoader的使用
神经网络的基本骨架
损失函数与反向传播
优化器
完整的模型训练套路
利用GPU训练
下边是个gpu训练的例子及使用
gpu训练代码
#!/usr/bin/python3.6
# -*- coding: utf-8 -*-
# @Time : 2021/12/20 5:38 下午
# @Author : 李萌周
# @Email : @qq.com
# @File : train_gpu_1.py
# @Software: PyCharm
# @remarks : 无
import torch.optim
import torchvision
#准备数据集
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time
# 定义训练的设备
device = torch.device("cpu")
train_data = torchvision.datasets.CIFAR10(root="../data",train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10(root="../data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# 长度
train_data_size = len(test_data)
test_data_size = len(test_data)
# 如果train_data_size=10,训练数据集长度为10
print("训练数据集长度:{}".format(train_data_size))
print("测试数据集长度:{}".format(test_data_size))
#利用DataLoader加载数据
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)
#创建网络模型
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model=nn.Sequential(
nn.Conv2d(3,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,64,5,1,2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64*4*4,64),
nn.Linear(64,10)
)
def forward(self,x):
x = self.model(x)
return x
#创建网络模型 cuda
tudui = Tudui()
tudui = tudui.to(device)
# if torch.cuda.is_available():
# tudui = tudui.cuda()
#损失函数 cuda
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
loss_fn = loss_fn.cuda()
#优化器
learning_rate = 0.01
optimizer = torch.optim.SGD(tudui.parameters(),lr=learning_rate)
# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练轮数
epoch = 20
#添加tensorboard
writer = SummaryWriter("../logs_train")
start_time = time.time()
for i in range(epoch):
print("------------第{}轮训练开始了------------".format(i+1))
#训练步骤开始
for data in train_dataloader:
imgs,targets = data
imgs = imgs.to(device)
targets = targets.to(device)
# if torch.cuda.is_available():
# imgs = imgs.cuda()
# targets = targets.cuda()
outputs = tudui(imgs)
loss = loss_fn(outputs,targets)
#优化器调优
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step = total_train_step + 1
if total_train_step % 100 == 0:
end_time = time.time()
print(end_time-start_time)
print("训练次数:{},Loss:{}".format(total_train_step,loss.item()))
writer.add_scalar("train_loss",loss.item(),total_train_step)
# 测试步骤开始
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
imgs = imgs.to(device)
targets = targets.to(device)
# if torch.cuda.is_available():
# imgs = imgs.cuda()
# targets = targets.cuda()
outputs = tudui(imgs)
loss = loss_fn(outputs, targets)
total_test_loss = total_test_loss + loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy = total_accuracy + accuracy
print("整体数据集上的loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy / test_data_size))
writer.add_scalar("test_loss", total_test_loss, total_train_step)
writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_train_step)
total_train_step = total_train_step + 1
torch.save(tudui,"tudui_{}.pth".format(i))
print("模型已经保存")
利用google.colab训练的 下载模型 本级测试
下边是测试代码
#!/usr/bin/python3.6
# -*- coding: utf-8 -*-
# @Time : 2021/12/20 6:40 下午
# @Author : 李萌周
# @Email : @qq.com
# @File : test.py
# @Software: PyCharm
# @remarks : 无
import torch
import torchvision
from PIL import Image
from torch import nn
image_path = "../imgs/img_5.png"
image = Image.open(image_path)
print(image)
image = image.convert('RGB')
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),
torchvision.transforms.ToTensor()])
image = transform(image)
print(image)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model=nn.Sequential(
nn.Conv2d(3,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,64,5,1,2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64*4*4,64),
nn.Linear(64,10)
)
def forward(self,x):
x = self.model(x)
return x
model = torch.load("tudui_49.pth",map_location=torch.device('cpu'))
print(model)
image = torch.reshape(image,(1,3,32,32))
model.eval()
with torch.no_grad():
output = model(image)
print(output)
print(output.argmax(1))
训练轮数
epoch = 20。正确率就是0.64xxxxxxx了,
再训练epoch = 50。正确率还是0.64xxxx。。。。
没有什么提升了。
b站视频链接https://www.bilibili.com/video/BV1hE411t7RN?p=32