LightOJ 1027 Dangerous Maze【期望】

本文探讨了一个经典的迷宫逃脱问题,通过分析不同门的选择及其可能导致的结果,利用概率论和期望值理论,给出了一种计算从迷宫中逃脱所需期望时间的方法。并提供了一个C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You are in a maze; seeing n doors in front of you in beginning. You can choose any door you like. The probability for choosing a door is equal for all doors.
If you choose the ith door, it can either take you back to the same position where you begun in xi minutes, or can take you out of the maze after xi minutes. If you come back to the same position, you can’t remember anything. So, every time you come to the beginning position, you have no past experience.
Now you want to find the expected time to get out of the maze.
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case contains a blank line and an integer n (1 ≤ n ≤ 100) denoting the number of doors. The next line contains n space separated integers. If the ith integer (xi) is positive, you can assume that the ith door will take you out of maze after xi minutes. If it’s negative, then the ith door will take you back to the beginning position after abs(xi) minutes. You can safely assume that 1 ≤ abs(xi) ≤ 10000.
Output
For each case, print the case number and the expected time to get out of the maze. If it’s impossible to get out of the maze, print ‘inf’. Print the result in p/q format. Where p is the numerator of the result and q is the denominator of the result and they are relatively prime. See the samples for details.
Sample Input
3
1
1
2
-10 -3
3
3 -6 -9
Sample Output
Case 1: 1/1
Case 2: inf
Case 3: 18/1

题意:有n个门, 正数表示经过时间 t 能走出迷宫, 负数表示经过时间 t 返回到原来位置(不仅出不去,还原地踏步t时间);
思路:设门的总数是N, 有N1个门可以走出迷宫, N2个门会返回原来的位置. T1为总的总出迷宫的时间, T2为总的返回原位的时间,则 P(走出迷宫)= N1 / N , P(返回)= N2 / N ;
期望实验次数(走出去的期望次数): E(X)= N / N1 ;
每次实验消耗的时间: T= (T1+T2)/ N ;
所需时间的数学期望: E(t)=(N / N1) * T = ( T1 + T2) / N1 ;(次数 * 单次花费时间)
期望次数的大神推导:
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std;

int gcd(int a, int b) {
    return b ? gcd(b, a % b) : a;
}

int main() {
    int t, p =1;
    scanf("%d", &t);
    while(t--) {
        int n, k;
        int sum = 0, ans = 0;;
        scanf("%d", &n);
        for(int i = 0; i < n; i++) {
            scanf("%d", &k);
            if(k > 0) ans++;
            sum += abs(k);
        }
        printf("Case %d: ", p++);
        if(ans) printf("%d/%d\n", sum / gcd(sum, ans), ans / gcd(sum, ans)); //注意化简 
        else puts("inf");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值