hdoj 1232 畅通工程

本文探讨了一个城镇交通网络问题,旨在通过最少的道路建设使任意两城镇间实现交通可达。利用并查集算法解决如何计算需要新增多少条道路的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?

Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。

Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。

Sample Input
4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0

Sample Output
1
0
2
998

Hint
Hint

Huge input, scanf is recommended.

#include<iostream>  
using namespace std;  

int  pre[1050];  
bool t[1050];               //t 用于标记独立块的根结点  

int Find(int x)  
{  
    int r=x;  
    while(r!=pre[r])  
        r=pre[r];  

    int i=x,j;  
    while(pre[i]!=r)  
    {  
        j=pre[i];  
        pre[i]=r;  
        i=j;  
    }  
    return r;  
}  

void mix(int x,int y)  
{  
    int fx=Find(x),fy=Find(y);  
    if(fx!=fy)  
    {  
        pre[fy]=fx;  
    }  
}   

int main()  
{  
    int N,M,a,b,i,j,ans;  
    while(scanf("%d%d",&N,&M)&&N)  
    {  
        for(i=1;i<=N;i++)          //初始化   
            pre[i]=i;  

        for(i=1;i<=M;i++)          //吸收并整理数据   
        {  
            scanf("%d%d",&a,&b);  
            mix(a,b);  
        }  


        memset(t,0,sizeof(t));  
        for(i=1;i<=N;i++)          //标记根结点  
        {  
            t[Find(i)]=1;  
        }  
        for(ans=0,i=1;i<=N;i++)  
            if(t[i])  
                ans++;  

        printf("%d\n",ans-1);  

    }  
    return 0;  
}//dellaserss  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值