逻辑斯蒂回归的代价函数

本文详细介绍了Logistic回归的代价函数J(θ),包括如何利用梯度下降法求解最优参数θ。通过求导解析了代价函数的偏导数,并展示了更新θ的公式,阐述了在梯度下降过程中的迭代步骤。

Logistic回归的代价函数

J(θ)=−1m[∑i=1my(i)log hθ(x(i))+(1−y(i))log(1−hθ(x(i)))]J(\theta)=-\frac{1}{m}\left[\sum^m_{i=1}y^{(i)}log\ h_\theta(x^{(i)})+(1-y^{(i)})log(1-h_\theta(x^{(i)}))\right]J(θ)=m1[i=1my(i)log hθ(x(i))+(1y(i))log(1hθ(x(i)))]对代价函数求偏导:
补充:
hθ(x(i))=g(x(i)θ)g(x)=11+e−xg′(x)=g(x)(1−g(x))∂hθ(x(i))∂θ=hθ′(x(i))(x(i))T\begin{aligned} &h_\theta(x^{(i)})=g(x^{(i)}\theta)\\&g(x)=\frac{1}{1+e^{-x}}\\ &g^{'}(x)=g(x)(1-g(x))\\ &\frac{\partial h_\theta(x^{(i)})}{\partial \theta}=h^{'}_\theta(x^{(i)})(x^{(i)})^T \end{aligned} hθ(x(i))=g(x(i)θ)g(x)=1+ex1g(x)=g(x)(1g(x))θhθ(x(i))=hθ(x(i))(x(i))T
∂J(θ)∂θ=−1m[∑i=1my(i)hθ(x(i))−(1−y(i))log(1−hθ(x(i)))]∂hθ(x(i))∂θ=−1m[∑i=1my(i)hθ(x(i))−(1−y(i))log(1−hθ(x(i)))]hθ′(x(i))(x(i))T=1m∑i=1mhθ′(x(i))(x(i))Thθ(x(i))(1−hθ(x(i)))(hθ(x(i))−y(i))=1m∑i=1m(hθ(x(i))−y(i))(x(i))T=1mXT(hθ(X)−y)\begin{aligned} \frac{\partial J(\theta)}{\partial \theta} &=-\frac{1}{m}\left[\sum^m_{i=1}\frac{y^{(i)}}{h_\theta(x^{(i)})}-\frac{(1-y^{(i)})}{log(1-h_\theta(x^{(i)}))}\right]\frac{\partial h_\theta(x^{(i)})}{\partial \theta}\\ &=-\frac{1}{m}\left[\sum^m_{i=1}\frac{y^{(i)}}{h_\theta(x^{(i)})}-\frac{(1-y^{(i)})}{log(1-h_\theta(x^{(i)}))}\right]h^{'}_\theta(x^{(i)})(x^{(i)})^T \\&=\frac{1}{m}\sum^m_{i=1}\frac{h^{'}_\theta(x^{(i)})(x^{(i)})^T}{h_\theta(x^{(i)})(1-h_\theta(x^{(i)}))}(h_\theta(x^{(i)})-y^{(i)})\\ &=\frac{1}{m}\sum^m_{i=1}(h_\theta(x^{(i)})-y^{(i)})(x^{(i)})^T\\ &=\frac{1}{m}X^T(h_\theta(X)-y) \end{aligned} θJ(θ)=m1[i=1mhθ(x(i))y(i)log(1hθ(x(i)))(1y(i))]θhθ(x(i))=m1[i=1mhθ(x(i))y(i)log(1hθ(x(i)))(1y(i))]hθ(x(i))(x(i))T=m1i=1mhθ(x(i))(1hθ(x(i)))hθ(x(i))(x(i))T(hθ(x(i))y(i))=m1i=1m(hθ(x(i))y(i))(x(i))T=m1XT(hθ(X)y)请注意,x(i)x^{(i)}x(i)是数据条,是行向量;hθ(X)−yh_\theta(X)-yhθ(X)y是列向量;θ\thetaθ是关于各属性权值的列向量。

利用Gradient Decent求解最优值θ\thetaθ

Repeat{θj:=θj−α∑i=1m(hθ(x(i))−y(i))xj(i)}simultaneously update all θj\begin{aligned} Repeat\{&\\ &\theta_j:=\theta_j-\alpha\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})x^{(i)}_j\\ &\}simultaneously\ update\ all\ \theta_j \end{aligned}Repeat{θj:=θjαi=1m(hθ(x(i))y(i))xj(i)}simultaneously update all θj
你妈,被这些鬼东西搞了一下午,fuck!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值