【100天精通Python】Day72:Python可视化_一文掌握Seaborn库的使用《二》_分类数据可视化,线性模型和参数拟合的可视化,示例+代码

本文深入探讨了使用Seaborn库进行Python数据可视化的技巧,包括分类数据的可视化(如类别散点图、类别分布图、类别估计图和类别单变量图)和线性模型及参数拟合的可视化(如线性回归、逻辑回归和残差图)。通过实例代码展示了如何利用Seaborn创建箱线图、小提琴图、柱状图、点图和残差图,帮助读者掌握数据分析和机器学习中的可视化方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. 分类数据的可视化

1.1 类别散点图(Categorical Scatter Plot)

1.2 类别分布图(Categorical Distribution Plot)

1.3 类别估计图(Categorical Estimate Plot)

1.4 类别单变量图(Categorical Univariate Plot)

2. 线性模型和参数拟合可视化

2.1 线性回归模型可视化(Linear Regression Plot)

2.2 逻辑回归模型可视化(Logistic Regression Plot)

2.3 残差绘图(Residual Plot)


1. 分类数据的可视化

1.1 类别散点图(Categorical Scatter Plot)

        类别散点图用于显示不同类别之间的数据点分布,通常使用散点图来表示。

        Seaborn中的stripplotswarmplot函数用于创建这种类型的图。

  • 可以通过指定hue参数来根据另一个分类变量对数据进行分组,以区分更多信息。
  • 使用jitter参数可以添加一些随机抖动,以避免数据点的重叠。

示例代码:

import seaborn as sns
import matplotlib.pyplot as plt

# 使用示例数据
data = sns.load_dataset("tips")

# 创建一个类别散点图
sns.stripplot(x="day", y="total_bill", data=data)

# 或者使用swarm
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LeapMay

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值