目录
数据清洗和处理
在数据清洗和处理方面,Pandas 提供了多种功能,包括处理缺失值、数据类型转换、数据去重以及数据合并和连接。以下是这些功能的详细描述和示例:
1.处理缺失值
在 Pandas 中处理缺失值有多种方法,包括删除缺失值、填充缺失值和插值。
1.1 删除缺失值:
删除缺失值是最简单的方法,但有时会导致数据损失。您可以使用 dropna()
方法来删除包含缺失值的行或列。
(1)删除包含缺失值的行:
import pandas as pd
目录
在数据清洗和处理方面,Pandas 提供了多种功能,包括处理缺失值、数据类型转换、数据去重以及数据合并和连接。以下是这些功能的详细描述和示例:
在 Pandas 中处理缺失值有多种方法,包括删除缺失值、填充缺失值和插值。
删除缺失值是最简单的方法,但有时会导致数据损失。您可以使用 dropna()
方法来删除包含缺失值的行或列。
(1)删除包含缺失值的行:
import pandas as pd