这个系列是学习王喆的【深度学习推荐系统实战】时做的笔记和自己的学习总结。
文章目录
零、一个栗子的引入
先从一个栗子入手,2019 年,阿里著名的千人千面系统驱动了天猫“双 11”2684 亿元的成交额。假设我们通过改进天猫的商品推荐功能,让平台整体的转化率提升 1%,那么在 2684 亿元成交额的基础上,我们就能再增加 26.84 亿元。 也就是说,推荐工程师仅通过优化推荐技术,就创造了 26.84 亿元的价值。这无疑是这个职位最大的魅力所在。
2013 年,百度率先在广告系统中应用了深度学习,2015 到 2020 年,阿里提出并应用了从 MLR 到 DIEN 等一系列的深度学习模型。国外的互联网巨头也不逞多让,从最早的 Google 的 Word2vec,到 2015 年 YouTube 的深度学习推荐系统,再到之后的 Facebook、Amazon、微软等等,几乎所有头部公司的成功应用,让深度学习如后浪般席卷了推荐系统业界,将传统的推荐模型彻底取代。
再或者说,我们最熟悉的天猫淘宝的双十一活动。
一、学习目标和要求
1.学习目标
在所有业界巨头的推荐引擎都由深度学习驱动的今天,作为一名推荐系统从业者,我们不应该止步于:
(1&