问题
给定
x
1
,
.
.
.
,
x
n
x_1,...,x_n
x1,...,xn,令
x
i
(
1
)
=
x
i
+
x
i
+
1
2
x_i^{(1)} = \frac{x_i+x_{i+1}}{2}
xi(1)=2xi+xi+1,
i
=
1
,
.
.
.
,
n
i=1,...,n
i=1,...,n,其中
x
n
+
i
=
x
i
x_{n+i}=x_i
xn+i=xi.
归纳地定义
x
i
(
k
)
=
x
i
(
k
−
1
)
+
x
i
+
1
(
k
−
1
)
2
,
i
=
1
,
.
.
.
,
n
x_{i}^{(k)}=\frac{x_i^{(k-1)}+x_{i+1}^{(k-1)}}{2},i=1,...,n
xi(k)=2xi(k−1)+xi+1(k−1),i=1,...,n
其中
x
n
+
1
(
k
−
1
)
=
x
1
(
k
−
1
)
x_{n+1}^{(k-1)}=x_1^{(k-1)}
xn+1(k−1)=x1(k−1),
k
=
2
,
3
,
.
.
.
k=2,3,...
k=2,3,...。证明:对于
i
=
1
,
.
.
.
,
n
i=1,...,n
i=1,...,n均成立
lim
k
→
∞
x
i
(
k
)
=
x
1
+
.
.
.
+
x
n
n
\lim_{k \rightarrow \infty} x_i^{(k)} = \frac{x_1+...+x_n}{n}
k→∞limxi(k)=nx1+...+xn
证明:
令
w
w
w表示
n
n
n次单位根,构造生成函数:
F
0
(
w
)
=
∑
i
=
1
n
x
i
w
n
−
i
F_0(w) = \sum_{i=1}^n x_iw^{n-i}
F0(w)=i=1∑nxiwn−i
那么显然
F
i
(
w
)
=
1
+
w
2
F
i
−
1
(
w
)
⇒
F
k
(
w
)
=
(
1
+
w
2
)
k
F
0
(
w
)
F_i(w) = \frac{1+w}{2}F_{i-1}(w) \Rightarrow F_{k}(w) = (\frac{1+w}{2})^k F_0(w)
Fi(w)=21+wFi−1(w)⇒Fk(w)=(21+w)kF0(w)。
考虑每个 x i x_i xi的系数,可以发现问题归结为证明在二项式系数 ( k 0 ) , ( k 1 ) , . . . , ( k k ) \binom{k}{0},\binom{k}{1},...,\binom{k}{k} (0k),(1k),...,(kk)中将相隔 n n n项的各项取和后除以 2 k 2^k 2k,当 k → ∞ k\to \infty k→∞极限为 1 n \frac{1}{n} n1,即往证: ∀ 0 ≤ i < n , lim k → ∞ ∑ j = 0 ∞ ( k i + j n ) 2 k = 1 n \forall 0 \le i <n,\lim_{k\rightarrow \infty}\frac{\sum_{j=0}^{\infty}\binom{k}{i+jn}}{2^k} = \frac{1}{n} ∀0≤i<n,k→∞lim2k∑j=0∞(i+jnk)=n1
观察这个 i + j n i+jn i+jn,是不是有点单位根反演的感觉?
∑ j = 0 ∞ ( k i + j n ) = ∑ v = 0 k ( k v ) ∑ j = 0 n − 1 ( w v − i ) j n = 1 n ∑ j = 0 n − 1 w − i j ∑ v = 0 k ( k v ) w v j = 1 n ∑ j = 0 n − 1 w − i j ( 1 + w j ) k \begin{aligned}\sum_{j=0}^{\infty}\binom{k}{i+jn} &= \sum_{v=0}^{k}\binom{k}{v}\frac{\sum_{j=0}^{n-1}(w^{v-i})^j}{n}\\ &=\frac{1}{n}\sum_{j=0}^{n-1}w^{-ij}\sum_{v=0}^k\binom{k}{v}w^{vj} \\&=\frac{1}{n}\sum_{j=0}^{n-1}w^{-ij}(1+w^j)^k \end{aligned} j=0∑∞(i+jnk)=v=0∑k(vk)n∑j=0n−1(wv−i)j=n1j=0∑n−1w−ijv=0∑k(vk)wvj=n1j=0∑n−1w−ij(1+wj)k
上式除以 2 k 2^k 2k后,只有 j = 0 j=0 j=0项极限不为0,故得到极限为 1 n \frac{1}{n} n1,故原结论成立。