// CV_IP.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include <opencv.hpp>
#include <iostream>
using namespace std;
using namespace cv;
//imshow("1", src);
//
//int main()
//{
// //扩大图像为适合尺寸
// int m = getOptimalDFTSize(src.rows);
// int n = getOptimalDFTSize(src.cols);
// //为此增添的元素用0初始化
// Mat padded;
// copyMakeBorder(src, padded, 0, m - src.rows, 0, n - src.cols, BORDER_CONSTANT, Scalar::all(0);
// //为傅里叶变换的结果(实部和虚部)分配空间
// Mat planes[] = { Mat_<float>(padded), Mat::zeros(padded.size(),CV_32F) };
// Mat complexI;
// merge(planes, 2, complexI); //planes数组合并为一个多通道的数组
// //此处为就地计算模式(in-place),即输入 输出为同一图像
// dft(complexI, complexI);
// //将复数化为幅值
// split(complexI, planes); //将多通道complexI分解为多个单通道
// planes[0] = Re(DFT(I), planes[1] = Im(DFT(I)), magnitude(planes[0] ,planes[1], planes[0]))
//}
//
// waitKey(0);
// return 0;
//}
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdio.h>
using namespace cv;
using namespace std;
static void help()
{
printf("\nThis program demonstrated the use of the discrete Fourier transform (dft)\n"
"The dft of an image is taken and it's power spectrum is displayed.\n"
"Usage:\n"
"./dft [image_name -- default lena.jpg]\n");
}
const char* keys =
{
"{1| |lena.jpg|input image file}"
};
int main(int argc, const char ** argv)
{
help();
CommandLineParser parser(argc, argv, keys); // opencv中用来处理命令行参数的类
string filename = "G:\\picture\\又壁纸\\57.jpg";
Mat img = imread(filename.c_str(), CV_LOAD_IMAGE_GRAYSCALE); //以灰度图像读入
if (img.empty())
{
help();
printf("Cannot read image file: %s\n", filename.c_str());
return -1;
}
int M = getOptimalDFTSize(img.rows); // 获得最佳DFT尺寸,为2的次方
int N = getOptimalDFTSize(img.cols); //同上
Mat padded;
copyMakeBorder(img, padded, 0, M - img.rows, 0, N - img.cols, BORDER_CONSTANT, Scalar::all(0)); // opencv中的边界扩展函数,提供多种方式扩展
Mat planes[] = { Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F) }; // Mat 数组,第一个为扩展后的图像,一个为空图像,
Mat complexImg;
merge(planes, 2, complexImg); // 合并成一个Mat
dft(complexImg, complexImg); // FFT变换, dft需要一个2通道的Mat
// compute log(1 + sqrt(Re(DFT(img))**2 + Im(DFT(img))**2))
split(complexImg, planes); //分离通道, planes[0] 为实数部分,planes[1]为虚数部分
magnitude(planes[0], planes[1], planes[0]); // 求模
Mat mag = planes[0];
mag += Scalar::all(1);
log(mag, mag); // 模的对数
// crop the spectrum, if it has an odd number of rows or columns
mag = mag(Rect(0, 0, mag.cols & -2, mag.rows & -2)); //保证偶数的边长
int cx = mag.cols / 2;
int cy = mag.rows / 2;
// rearrange the quadrants of Fourier image //对傅立叶变换的图像进行重排,4个区块,从左到右,从上到下 分别为q0, q1, q2, q3
// so that the origin is at the image center // 对调q0和q3, q1和q2
Mat tmp;
Mat q0(mag, Rect(0, 0, cx, cy));
Mat q1(mag, Rect(cx, 0, cx, cy));
Mat q2(mag, Rect(0, cy, cx, cy));
Mat q3(mag, Rect(cx, cy, cx, cy));
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
normalize(mag, mag, 0, 1, CV_MINMAX); // 规范化值到 0~1 显示图片的需要
imshow("spectrum magnitude", mag);
waitKey();
return 0;
}
opencv dft例程
最新推荐文章于 2022-07-14 16:18:59 发布